中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共15条,第1-10条 帮助

条数/页: 排序方式:
Multidimensional high-temperature field measurement method for flame based on near infrared radiation spectrum of water vapor 期刊论文  OAI收割
OPTICS AND LASERS IN ENGINEERING, 2024, 卷号: 174, 页码: 13
作者:  
Zhou GX(周功喜);  Wang, Wenjie;  Li F(李飞);  Lin X(林鑫);  Meng DD(孟东东)
  |  收藏  |  浏览/下载:23/0  |  提交时间:2024/02/05
GroupNet: Learning to group corner for object detection in remote sensing imagery 期刊论文  OAI收割
CHINESE JOURNAL OF AERONAUTICS, 2022, 卷号: 35, 期号: 6, 页码: 273-284
作者:  
Ni, Lei;  Huo, Chunlei;  Zhang, Xin;  Wang, Peng;  Zhou, Zhixin
  |  收藏  |  浏览/下载:27/0  |  提交时间:2022/07/25
Neutron-induced single event upset simulation in Geant4 for three-dimensional die-stacked SRAM* 期刊论文  OAI收割
CHINESE PHYSICS B, 2021, 卷号: 30, 期号: 3, 页码: 8
作者:  
Mo, Li-Hua;  Ye, Bing;  Liu, Jie;  Luo, Jie;  Sun, You-Mei
  |  收藏  |  浏览/下载:33/0  |  提交时间:2021/12/10
A generalized multi-dictionary least squares framework regularized with multi-graph embeddings 期刊论文  OAI收割
PATTERN RECOGNITION, 2019, 卷号: 90, 页码: 1-11
作者:  
Abeo, Timothy Apasiba;  Shen, Xiang-Jun;  Bao, Bing-Kun;  Zha, Zheng-Jun;  Fan, Jianping
  |  收藏  |  浏览/下载:63/0  |  提交时间:2019/12/16
Readout method for two-dimensional multi-wire proportional chamber 期刊论文  iSwitch采集
Acta physica sinica, 2017, 卷号: 66, 期号: 7, 页码: 9
作者:  
Wen Zhi-Wen;  Qi Hui-Rong;  Wang Yan-Feng;  Sun Zhi-Jia;  Zhang Yu-Lian
收藏  |  浏览/下载:34/0  |  提交时间:2019/04/23
Readout method for two-dimensional multi-wire proportional chamber 期刊论文  OAI收割
ACTA PHYSICA SINICA物理学报, 2017, 卷号: 66, 期号: 7, 页码: 72901
作者:  
Sun, ZJ;  Wang, YF;  Qi, HR;  Wen, ZW;  Chen YB(陈元柏)
  |  收藏  |  浏览/下载:35/0  |  提交时间:2019/08/27
Image coding using wavelet-based compressive sampling (EI CONFERENCE) 会议论文  OAI收割
2012 5th International Symposium on Computational Intelligence and Design, ISCID 2012, October 28, 2012 - October 29, 2012, Hangzhou, China
作者:  
Li J.;  Li J.;  Li J.
收藏  |  浏览/下载:45/0  |  提交时间:2013/03/25
In this paper  we proposed a novel coding scheme is proposed using wavelet-based CS framework for nature image. First  two-dimension discrete wavelet transform (DWT) is applied to a nature image for sparse representation. After multi-scale DWT  the low-frequency sub-band and high-frequency sub-bands are re-sampled separately. According to the statistical dependences among DWT coefficients  we allocate different measurements to low- and high-frequency component. Then  the measurements samples can be quantized. The quantize samples are entropy coded and forward correct coding (FEC). Finally  the compressed streams are transmitted. At the decoder  one can simply reconstruct the image via l1 minimization. Experimental results show that the proposed wavelet-based CS scheme achieves better compression performance against the relevant existing solutions.  
ON MULTI-DIMENSIONAL SONIC-SUBSONIC FLOW 期刊论文  OAI收割
ACTA MATHEMATICA SCIENTIA, 2011, 卷号: 31, 期号: 6, 页码: 2131-2140
作者:  
Huang Feimin;  Wang Tianyi
  |  收藏  |  浏览/下载:18/0  |  提交时间:2018/07/30
A Speed-Up Strategy for Finite Volume WENO Schemes for Hyperbolic Conservation Laws 期刊论文  OAI收割
JOURNAL OF SCIENTIFIC COMPUTING, 2011, 卷号: 46, 期号: 3, 页码: 359-378
作者:  
Teng, Fei;  Yuan, Li;  Tang, Tao
  |  收藏  |  浏览/下载:16/0  |  提交时间:2018/07/30
Using bidirectional binary particle swarm optimization for feature selection in feature-level fusion recognition system (EI CONFERENCE) 会议论文  OAI收割
2009 4th IEEE Conference on Industrial Electronics and Applications, ICIEA 2009, May 25, 2009 - May 27, 2009, Xi'an, China
作者:  
Wang D.;  Wang Y.;  Wang Y.;  Wang Y.;  Wang Y.
收藏  |  浏览/下载:24/0  |  提交时间:2013/03/25
In feature-level fusion recognition system  the other is optimizing system sensor design to get outstanding cost performance. So feature selection become usually necessary to reduce dimensionality of the combination of multi-sensor features and improve system performance in system design. In general  there are two main missions. One is improving the recognition correct rate as soon as possible  the optimization is usually applied to feature selection because of its computational feasibility and validity. For further improving recognition accuracy and reducing selected feature dimensions  this paper presents a more rational and accurate optimization  Bidirectional Binary Particle Swarm Optimization (BBPSO) algorithm for feature selection in feature-level fusion target recognition system. In addition  we introduce a new evaluating function as criterion function in BBPSO feature selection method. At the last  we utilized Leave-One-Out method to validate the proposed method. The experiment results show that the proposed algorithm improves classification accuracy by two percentage points  while the selected feature dimensions are less one dimension than original Particle Swarm Optimization approach with 16 original feature dimensions. 2009 IEEE.