中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [2]
计算技术研究所 [1]
长春光学精密机械与物... [1]
上海神经科学研究所 [1]
采集方式
OAI收割 [5]
内容类型
期刊论文 [3]
会议论文 [1]
学位论文 [1]
发表日期
2018 [1]
2016 [1]
2010 [1]
2008 [1]
2006 [1]
学科主题
Multidisci... [1]
筛选
浏览/检索结果:
共5条,第1-5条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Learning to Transform Service Instructions into Actions with Reinforcement Learning and Knowledge Base
期刊论文
OAI收割
International Journal of Automation and Computing, 2018, 卷号: 15, 期号: 5, 页码: 582-592
作者:
Meng-Yang Zhang
;
Guo-Hui Tian
;
Ci-Ci Li
;
Jing Gong
  |  
收藏
  |  
浏览/下载:6/0
  |  
提交时间:2021/02/23
Natural language
robot
knowledge base
reinforcement learning
object state.
Spatial structure of neuronal receptive field in awake monkey secondary visual cortex (V2)
期刊论文
OAI收割
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 卷号: 113, 期号: 7, 页码: 1913-1918
作者:
Liu, L
;
She, L
;
Chen, M
;
Liu, TY
;
Lu, HDD
收藏
  |  
浏览/下载:46/0
  |  
提交时间:2016/09/14
AREA V2
FUNCTIONAL-ORGANIZATION
STRIATE CORTEX
MACAQUE MONKEY
NATURAL IMAGES
INDEPENDENT COMPONENTS
OBJECT RECOGNITION
PRIMATE AREA-18
SIMPLE CELLS
FILTERS
自然场景图像语义识别及标注算法研究
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2010
作者:
江爱文
收藏
  |  
浏览/下载:72/0
  |  
提交时间:2015/09/02
自然场景图像语义分类
视觉目标类识别
图像多标签标注
基于内容的图像检索
图像理解
Natural scene image semantic classification
visual object classes categorization
multi-label image annotation
content based image retrieval
image understanding
Types, structures and theories in NKI
期刊论文
OAI收割
Frontiers of Computer Science in China, 2008, 卷号: 2, 期号: 4, 页码: 451
作者:
Xiaoru Zhang
;
Zaiyue Zhang
;
Yuefei Sui
  |  
收藏
  |  
浏览/下载:2/0
  |  
提交时间:2023/12/04
type
ontology
concept
individual
natural object
A novel starting-point-independent wavelet coefficient shape matching (EI CONFERENCE)
会议论文
OAI收割
ICO20: Optical Information Processing, August 21, 2005 - August 26, 2005, Changchun, China
Hu S.
;
Zhu M.
;
Wu C.
;
Song H.-J.
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2013/03/25
In many computer vision tasks
in order to improve the accuracy and robustness to the noise
wavelet analysis is preferred for the natural multi-resolution property. However
the wavelet representation suffers from the dependency of the starting point of the sampled contour. For overcoming the problem that the wavelet representation depends on the starting point of the sampled contour
the Zernike moments are introduced
and a novel Starting-Point-lndependent wavelet coefficient shape matching algorithm is presented. The proposed matching algorithm firstly gains the object contours
and give the translation and scale invariant object shape representation. The object shape representation is converted to the dyadic wavelet representation by the wavelet transform. And then calculate the Zernike moments of wavelet representation in different scales. With respect to property of rotation invariant of Zernike moments
consider the Zernike moments as the feature vector to calculate the dissimilarity between the object and template image
which overcoming the problem of dependency of starting point. The experimental results have proved the proposed algorithm to be efficient
precise
and robust.