中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共5条,第1-5条 帮助

条数/页: 排序方式:
Learning to Transform Service Instructions into Actions with Reinforcement Learning and Knowledge Base 期刊论文  OAI收割
International Journal of Automation and Computing, 2018, 卷号: 15, 期号: 5, 页码: 582-592
作者:  
Meng-Yang Zhang;  Guo-Hui Tian;  Ci-Ci Li;  Jing Gong
  |  收藏  |  浏览/下载:6/0  |  提交时间:2021/02/23
Spatial structure of neuronal receptive field in awake monkey secondary visual cortex (V2) 期刊论文  OAI收割
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 卷号: 113, 期号: 7, 页码: 1913-1918
作者:  
Liu, L;  She, L;  Chen, M;  Liu, TY;  Lu, HDD
收藏  |  浏览/下载:46/0  |  提交时间:2016/09/14
自然场景图像语义识别及标注算法研究 学位论文  OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2010
作者:  
江爱文
收藏  |  浏览/下载:72/0  |  提交时间:2015/09/02
Types, structures and theories in NKI 期刊论文  OAI收割
Frontiers of Computer Science in China, 2008, 卷号: 2, 期号: 4, 页码: 451
作者:  
Xiaoru Zhang;  Zaiyue Zhang;  Yuefei Sui
  |  收藏  |  浏览/下载:2/0  |  提交时间:2023/12/04
A novel starting-point-independent wavelet coefficient shape matching (EI CONFERENCE) 会议论文  OAI收割
ICO20: Optical Information Processing, August 21, 2005 - August 26, 2005, Changchun, China
Hu S.; Zhu M.; Wu C.; Song H.-J.
收藏  |  浏览/下载:17/0  |  提交时间:2013/03/25
In many computer vision tasks  in order to improve the accuracy and robustness to the noise  wavelet analysis is preferred for the natural multi-resolution property. However  the wavelet representation suffers from the dependency of the starting point of the sampled contour. For overcoming the problem that the wavelet representation depends on the starting point of the sampled contour  the Zernike moments are introduced  and a novel Starting-Point-lndependent wavelet coefficient shape matching algorithm is presented. The proposed matching algorithm firstly gains the object contours  and give the translation and scale invariant object shape representation. The object shape representation is converted to the dyadic wavelet representation by the wavelet transform. And then calculate the Zernike moments of wavelet representation in different scales. With respect to property of rotation invariant of Zernike moments  consider the Zernike moments as the feature vector to calculate the dissimilarity between the object and template image  which overcoming the problem of dependency of starting point. The experimental results have proved the proposed algorithm to be efficient  precise  and robust.