中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
重庆绿色智能技术研究... [3]
采集方式
OAI收割 [3]
内容类型
期刊论文 [3]
发表日期
2021 [3]
学科主题
筛选
浏览/检索结果:
共3条,第1-3条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
An Alternating-Direction-Method of Multipliers-Incorporated Approach to Symmetric Non-Negative Latent Factor Analysis
期刊论文
OAI收割
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 页码: 15
作者:
Luo, Xin
;
Zhong, Yurong
;
Wang, Zidong
;
Li, Maozhen
  |  
收藏
  |  
浏览/下载:36/0
  |  
提交时间:2022/08/22
Symmetric matrices
Computational modeling
Data models
Analytical models
Training
Learning systems
Convergence
Alternating-direction-method of multipliers (ADMM)
learning system
missing data
non-negative latent factor analysis (NLFA)
symmetric high-dimensional and incomplete matrix (SHDI)
undirected weighted network
An Instance-Frequency-Weighted Regularization Scheme for Non-Negative Latent Factor Analysis on High-Dimensional and Sparse Data
期刊论文
OAI收割
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 卷号: 51, 期号: 6, 页码: 3522-3532
作者:
Luo, Xin
;
Wang, Zidong
;
Shang, Mingsheng
  |  
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2021/08/20
High-dimensional and sparse (HiDS) data
industrial application
instance-frequency
non-negative latent factor analysis (NLFA)
recommender system
regularization
An alpha -beta -Divergence-Generalized Recommender for Highly Accurate Predictions of Missing User Preferences
期刊论文
OAI收割
IEEE TRANSACTIONS ON CYBERNETICS, 2021, 页码: 13
作者:
Shang, Mingsheng
;
Yuan, Ye
;
Luo, Xin
;
Zhou, MengChu
  |  
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2022/08/22
Computational modeling
Sparse matrices
Convergence
Data models
Predictive models
Linear programming
Euclidean distance
-divergence
big data
convergence analysis
high-dimensional and sparse (HiDS) data
momentum
machine learning
missing data estimation
non-negative latent factor analysis (NLFA)
recommender system (RS)