中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [8]
计算技术研究所 [3]
地理科学与资源研究所 [2]
遥感与数字地球研究所 [2]
采集方式
OAI收割 [15]
内容类型
期刊论文 [10]
会议论文 [3]
学位论文 [2]
发表日期
2022 [1]
2021 [3]
2016 [1]
2015 [1]
2014 [1]
2013 [2]
更多
学科主题
筛选
浏览/检索结果:
共15条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
SLMS-SSD: Improving the balance of semantic and spatial information in object detection
期刊论文
OAI收割
EXPERT SYSTEMS WITH APPLICATIONS, 2022, 卷号: 206, 页码: 10
作者:
Wang, Kunfeng
;
Wang, Yadong
;
Zhang, Shuqin
;
Tian, Yonglin
;
Li, Dazi
  |  
收藏
  |  
浏览/下载:44/0
  |  
提交时间:2022/09/19
Object detection
Deep learning
Multi-scale feature selection
Self-learning feature fusion
Mapping Panax Notoginseng Plantations by Using an Integrated Pixel- and Object-Based (IPOB) Approach and ZY-3 Imagery
期刊论文
OAI收割
REMOTE SENSING, 2021, 卷号: 13, 期号: 11, 页码: 22
作者:
Yang, Zhiqi
;
Dong, Jinwei
;
Kou, Weili
;
Qin, Yuanwei
;
Xiao, Xiangming
  |  
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2021/08/19
Random Forest
integrated pixel- and object-based (IPOB) approach
feature selection
segmentation
Panax notoginseng
Mapping Panax Notoginseng Plantations by Using an Integrated Pixel- and Object-Based (IPOB) Approach and ZY-3 Imagery
期刊论文
OAI收割
REMOTE SENSING, 2021, 卷号: 13, 期号: 11, 页码: 22
作者:
Yang, Zhiqi
;
Dong, Jinwei
;
Kou, Weili
;
Qin, Yuanwei
;
Xiao, Xiangming
  |  
收藏
  |  
浏览/下载:19/0
  |  
提交时间:2021/08/19
Random Forest
integrated pixel- and object-based (IPOB) approach
feature selection
segmentation
Panax notoginseng
Feature Rescaling and Fusion for Tiny Object Detection
期刊论文
OAI收割
IEEE ACCESS, 2021, 卷号: 9, 页码: 62946-62955
作者:
Liu, Jingwei
;
Gu, Yi
;
Han, Shumin
;
Zhang, Zhibin
;
Guo, Jiafeng
  |  
收藏
  |  
浏览/下载:65/0
  |  
提交时间:2021/12/01
Feature extraction
Object detection
Semantics
Task analysis
Training
Spatial resolution
Shape
Tiny object detection
nonparametric adaptive selection
feature fusion
feature pyramid network
ensemble model
Adaptive Probabilistic Tracking with Discriminative Feature Selection for Mobile Robot
会议论文
OAI收割
Budapest, October 9-12, 2016
作者:
Wang, Peng
;
Luo, Yongkang
;
Li, Wanyi
;
Qiao, Hong
  |  
收藏
  |  
浏览/下载:36/0
  |  
提交时间:2016/10/16
Object Tracking
Mobile Robot
Discrinimative Feature Selection
Object-Based Crop Classification with Landsat-MODIS Enhanced Time-Series Data
期刊论文
OAI收割
REMOTE SENSING, 2015, 卷号: 7, 期号: 12, 页码: 15318-15339
作者:
Li, Qingting
;
Wang, Cuizhen
;
Zhang, Bing
;
Lu, Linlin
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2016/04/20
object-based
feature selection
decision tree
satellite time series
crop classification
Spatial modeling via feature co-pooling and SG grafting
期刊论文
OAI收割
NEUROCOMPUTING, 2014, 卷号: 139, 页码: 415-422
作者:
Liu, Feng
;
Huang, Yongzhen
;
Wang, Liang
;
Yang, Wankou
;
Sun, Changyin
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2015/08/12
Object classification
Spatial modeling
Feature selection
Object Detection via Structural Feature Selection and Shape Model
期刊论文
OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 卷号: 22, 期号: 12, 页码: 4984-4995
作者:
Zhang, Huigang
;
Bai, Xiao
;
Zhou, Jun
;
Cheng, Jian
;
Zhao, Huijie
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2015/08/12
Object detection
foreground feature selection
part-based shape model
An Extraction Method of Urban Ecological Types Based on Object-oriented Classification A Case Study on Wuhan City
会议论文
OAI收割
Proceedings of the 2013 the International Conference on Remote Sensing, Environment and Transportation Engineering (Rsete 2013)
Wu, Mengmeng
;
Jiao, Weili
;
Wang, Wei
;
Liu, Huichan
;
Long, Tengfei
收藏
  |  
浏览/下载:60/0
  |  
提交时间:2014/12/07
Object-oriented
urban ecological types extraction
image segmentation
object feature selection
Online multiple instance gradient feature selection for robust visual tracking
期刊论文
OAI收割
PATTERN RECOGNITION LETTERS, 2012, 卷号: 33, 期号: 9, 页码: 1075-1082
作者:
Xie, Yuan
;
Qu, Yanyun
;
Li, Cuihua
;
Zhang, Wensheng
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2015/09/18
Gradient-based feature selection
HOG
Multiple Instance Learning
Online object tracking