中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究所 [4]
海洋研究所 [2]
长春光学精密机械与物... [1]
数学与系统科学研究院 [1]
采集方式
OAI收割 [8]
内容类型
期刊论文 [6]
CNKI期刊论文 [1]
会议论文 [1]
发表日期
2020 [1]
2018 [4]
2014 [2]
2007 [1]
学科主题
Meteorolog... [1]
筛选
浏览/检索结果:
共8条,第1-8条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
县域村镇建设资源环境承载能力评价及人口合理规模测算——以江西省永丰县为例
期刊论文
OAI收割
资源科学, 2020, 卷号: 42, 期号: 7, 页码: 1249
作者:
马定国
;
戴雄祖
;
羊金凤
;
王传胜
  |  
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2021/03/16
village and town development
resource and environmental carrying capacity
suitability classification
development intensity
optimal population size
Yongfeng County
村镇建设
资源环境承载能力
适宜性分类
开发强度
人口合理规模
永丰县
How to Measure Urban Land Use Intensity? A Perspective of Multi-Objective Decision in Wuhan Urban Agglomeration, China
期刊论文
OAI收割
SUSTAINABILITY, 2018, 卷号: 10, 期号: 11, 页码: 15
作者:
Yang, Jun
;
Jin, Gui
;
Huang, Xianjin
;
Chen, Kun
;
Meng, Hao
  |  
收藏
  |  
浏览/下载:40/0
  |  
提交时间:2019/05/23
urban land
factor substitution theory
optimal intensity
MDM
multi-objective decision
Wuhan urban agglomeration
How to Measure Urban Land Use Intensity? A Perspective of Multi-Objective Decision in Wuhan Urban Agglomeration, China
期刊论文
OAI收割
SUSTAINABILITY, 2018, 卷号: 10, 期号: 11, 页码: 15
作者:
Yang, Jun
;
Jin, Gui
;
Huang, Xianjin
;
Chen, Kun
;
Meng, Hao
  |  
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2019/05/23
urban land
factor substitution theory
optimal intensity
MDM
multi-objective decision
Wuhan urban agglomeration
How to Measure Urban Land Use Intensity? A Perspective of Multi-Objective Decision in Wuhan Urban Agglomeration, China
期刊论文
OAI收割
SUSTAINABILITY, 2018, 卷号: 10, 期号: 11, 页码: 15
作者:
Yang, Jun
;
Jin, Gui
;
Huang, Xianjin
;
Chen, Kun
;
Meng, Hao
  |  
收藏
  |  
浏览/下载:16/0
  |  
提交时间:2019/05/23
urban land
factor substitution theory
optimal intensity
MDM
multi-objective decision
Wuhan urban agglomeration
Analysis of product return rate and price competition in two supply chains
期刊论文
OAI收割
OPERATIONAL RESEARCH, 2018, 卷号: 18, 期号: 2, 页码: 469-496
作者:
Zheng, Yanyan
;
Shu, Tong
;
Wang, Shouyang
;
Chen, Shou
;
Lai, Kin Keung
  |  
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2018/07/30
Supply chains
Betrand competition
Competition intensity
Product return rate
Competition structures
Optimal strategy
Can Adaptive Observations Improve Tropical Cyclone Intensity Forecasts?
CNKI期刊论文
OAI收割
2014
作者:
QIN Xiaohao
;
MU Mu
  |  
收藏
  |  
浏览/下载:1/0
  |  
提交时间:2024/12/18
adaptive observation,tropical cyclone,intensity forecast,conditional nonlinear optimal perturbation
Can Adaptive Observations Improve Tropical Cyclone Intensity Forecasts?
期刊论文
OAI收割
ADVANCES IN ATMOSPHERIC SCIENCES, 2014, 卷号: 31, 期号: 2, 页码: 252-262
作者:
Qin Xiaohao
;
Mu Mu
收藏
  |  
浏览/下载:39/0
  |  
提交时间:2015/06/11
adaptive observation
tropical cyclone
intensity forecast
conditional nonlinear optimal perturbation
Integrated intensity, orientation code and spatial information for robust tracking (EI CONFERENCE)
会议论文
OAI收割
2007 2nd IEEE Conference on Industrial Electronics and Applications, ICIEA 2007, May 23, 2007 - May 25, 2007, Harbin, China
作者:
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2013/03/25
real-time tracking is an important topic in computer vision. Conventional single cue algorithms typically fail outside limited tracking conditions. Integration of multimodal visual cues with complementary failure modes allows tracking to continue despite losing individual cues. In this paper
we combine intensity
orientation codes and special information to form a new intensity-orientation codes-special (IOS) feature to represent the target. The intensity feature is not affected by the shape variance of object and has good stability. Orientation codes matching is robust for searching object in cluttered environments even in the cases of illumination fluctuations resulting from shadowing or highlighting
etc The spatial locations of the pixels are used which allow us to take into account the spatial information which is lost in traditional histogram. Histograms of intensity
orientation codes and spatial information are employed for represent the target Mean shift algorithm is a nonparametric density estimation method. The fast and optimal mode matching can be achieved by this method. In order to reduce the compute time
we use the mean shift procedure to reach the target localization. Experiment results show that the new method can successfully cope with clutter
partial occlusions
illumination change
and target variations such as scale and rotation. The computational complexity is very low. If the size of the target is 3628 pixels
it only needs 12ms to complete the method. 2007 IEEE.