中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共8条,第1-8条 帮助

条数/页: 排序方式:
县域村镇建设资源环境承载能力评价及人口合理规模测算——以江西省永丰县为例 期刊论文  OAI收割
资源科学, 2020, 卷号: 42, 期号: 7, 页码: 1249
作者:  
马定国;  戴雄祖;  羊金凤;  王传胜
  |  收藏  |  浏览/下载:22/0  |  提交时间:2021/03/16
How to Measure Urban Land Use Intensity? A Perspective of Multi-Objective Decision in Wuhan Urban Agglomeration, China 期刊论文  OAI收割
SUSTAINABILITY, 2018, 卷号: 10, 期号: 11, 页码: 15
作者:  
Yang, Jun;  Jin, Gui;  Huang, Xianjin;  Chen, Kun;  Meng, Hao
  |  收藏  |  浏览/下载:40/0  |  提交时间:2019/05/23
How to Measure Urban Land Use Intensity? A Perspective of Multi-Objective Decision in Wuhan Urban Agglomeration, China 期刊论文  OAI收割
SUSTAINABILITY, 2018, 卷号: 10, 期号: 11, 页码: 15
作者:  
Yang, Jun;  Jin, Gui;  Huang, Xianjin;  Chen, Kun;  Meng, Hao
  |  收藏  |  浏览/下载:24/0  |  提交时间:2019/05/23
How to Measure Urban Land Use Intensity? A Perspective of Multi-Objective Decision in Wuhan Urban Agglomeration, China 期刊论文  OAI收割
SUSTAINABILITY, 2018, 卷号: 10, 期号: 11, 页码: 15
作者:  
Yang, Jun;  Jin, Gui;  Huang, Xianjin;  Chen, Kun;  Meng, Hao
  |  收藏  |  浏览/下载:16/0  |  提交时间:2019/05/23
Analysis of product return rate and price competition in two supply chains 期刊论文  OAI收割
OPERATIONAL RESEARCH, 2018, 卷号: 18, 期号: 2, 页码: 469-496
作者:  
Zheng, Yanyan;  Shu, Tong;  Wang, Shouyang;  Chen, Shou;  Lai, Kin Keung
  |  收藏  |  浏览/下载:30/0  |  提交时间:2018/07/30
Can Adaptive Observations Improve Tropical Cyclone Intensity Forecasts? CNKI期刊论文  OAI收割
2014
作者:  
QIN Xiaohao;  MU Mu
  |  收藏  |  浏览/下载:1/0  |  提交时间:2024/12/18
Can Adaptive Observations Improve Tropical Cyclone Intensity Forecasts? 期刊论文  OAI收割
ADVANCES IN ATMOSPHERIC SCIENCES, 2014, 卷号: 31, 期号: 2, 页码: 252-262
作者:  
Qin Xiaohao;  Mu Mu
收藏  |  浏览/下载:39/0  |  提交时间:2015/06/11
Integrated intensity, orientation code and spatial information for robust tracking (EI CONFERENCE) 会议论文  OAI收割
2007 2nd IEEE Conference on Industrial Electronics and Applications, ICIEA 2007, May 23, 2007 - May 25, 2007, Harbin, China
作者:  
Wang Y.;  Wang Y.;  Wang Y.;  Wang Y.;  Wang Y.
收藏  |  浏览/下载:26/0  |  提交时间:2013/03/25
real-time tracking is an important topic in computer vision. Conventional single cue algorithms typically fail outside limited tracking conditions. Integration of multimodal visual cues with complementary failure modes allows tracking to continue despite losing individual cues. In this paper  we combine intensity  orientation codes and special information to form a new intensity-orientation codes-special (IOS) feature to represent the target. The intensity feature is not affected by the shape variance of object and has good stability. Orientation codes matching is robust for searching object in cluttered environments even in the cases of illumination fluctuations resulting from shadowing or highlighting  etc The spatial locations of the pixels are used which allow us to take into account the spatial information which is lost in traditional histogram. Histograms of intensity  orientation codes and spatial information are employed for represent the target Mean shift algorithm is a nonparametric density estimation method. The fast and optimal mode matching can be achieved by this method. In order to reduce the compute time  we use the mean shift procedure to reach the target localization. Experiment results show that the new method can successfully cope with clutter  partial occlusions  illumination change  and target variations such as scale and rotation. The computational complexity is very low. If the size of the target is 3628 pixels  it only needs 12ms to complete the method. 2007 IEEE.