中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共4条,第1-4条 帮助

条数/页: 排序方式:
Reducing Redundancy of Musculoskeletal Robot With Convex Hull Vertexes Selection 期刊论文  OAI收割
IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2020, 卷号: 12, 期号: 3, 页码: 601-617
作者:  
Zhong, Shanlin;  Chen, Jiahao;  Niu, Xingyu;  Fu, Hang;  Qiao, Hong
  |  收藏  |  浏览/下载:26/0  |  提交时间:2021/01/07
On hyperspectral remotely sensed image classification based on MNF and AdaBoosting (EI CONFERENCE) 会议论文  OAI收割
2012 3rd IEEE/IET International Conference on Audio, Language and Image Processing, ICALIP 2012, July 16, 2012 - July 18, 2012, Shanghai, China
作者:  
Yu P.;  Yu P.;  Gao X.
收藏  |  浏览/下载:23/0  |  提交时间:2013/03/25
An improved hyperspectral classification algorithm based on back-propagation neural networks (EI CONFERENCE) 会议论文  OAI收割
2012 2nd International Conference on Remote Sensing, Environment and Transportation Engineering, RSETE 2012, June 1, 2012 - June 3, 2012, Nanjing, China
作者:  
Yu P.;  Yu P.
收藏  |  浏览/下载:34/0  |  提交时间:2013/03/25
In this paper  a new method is proposed to improve the classification performance of hyperspectral images by combining the principal component analysis (PCA)  genetic algorithm (GA)  and artificial neural networks (ANNs). First  some characteristics of the hyperspectral remotely sensed data  such as high correlation  high redundancy  etc.  are investigated. Based on the above analysis  we propose to use the principal component analysis to capture the main information existing in the hyperspectral images and reduce its dimensionality consequently. Next  we use neural networks to classify the reduced hyperspectral data. Since the back-propagation neural network we used is easy to suffer from the local minimum problem  we adopt a genetic algorithm to optimize the BP network's weights and the threshold. Experimental results show that the classification accuracy is improved and the time of calculation is reduced as well. 2012 IEEE.  
An improved two-dimensional entropy method for star trail tracing in deep sky (EI CONFERENCE) 会议论文  OAI收割
ICO20: Optical Information Processing, August 21, 2005 - August 26, 2005, Changchun, China
作者:  
Wang Y.-J.;  Yao Z.-J.
收藏  |  浏览/下载:32/0  |  提交时间:2013/03/25
The trace of star trail is an important component of deep sky detection. The stars are low contrast targets  and their self-rotation will make their brightness change in cycle. Above all  the trail trace is vulnerable to the block and disturbance of other stars. Traditional one-dimensional maximum entropy thresholding algorithm is vulnerable to the noise  and the calculation of two-dimensional entropy methods is too large and takes too much time. This paper proposes an improved two-dimensional entropy threshold algorithm. We use recursion iteration method to eliminate the redundancy calculation  and reduce the size of two-dimensional histogram based on the deep sky stars characteristic  such as low contrast  fuzziness and the centralized histogram. We also combine our algorithm with the space trail trace model to forecast the star trace. Experiments results show  when the star are blocked or they turn dark  the method still can well extrapolate the star trace. Our method improves the capability of trailing the ebb and small star  and increases the precision of tracing. It is also robust to the noise  so there is a good application foreground for the method.