中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [7]
沈阳自动化研究所 [4]
地理科学与资源研究所 [3]
计算技术研究所 [2]
深海科学与工程研究所 [1]
合肥物质科学研究院 [1]
更多
采集方式
OAI收割 [19]
内容类型
期刊论文 [19]
发表日期
2024 [3]
2023 [2]
2022 [7]
2021 [4]
2020 [3]
学科主题
筛选
浏览/检索结果:
共19条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Assessment of the urban habitat quality service functions and their drivers based on the fusion module of graph attention network and residual network
期刊论文
OAI收割
INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2024, 卷号: 17, 期号: 1, 页码: 29
作者:
Wang, Chunyang
;
Yang, Kui
;
Yang, Wei
;
Li, Runkui
;
Qiang, Haiyang
  |  
收藏
  |  
浏览/下载:65/0
  |  
提交时间:2024/02/19
Residual network
graph attention network
super-pixel segmentation
habitat quality
driving force analysis
Lightweight robotic grasping detection network based on dual attention and inverted residual
期刊论文
OAI收割
TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2024, 页码: 9
作者:
Yang, Yuequan
;
Li, Wei
;
Cao, Zhiqiang
;
Bao, Jiatong
;
Li, Fudong
  |  
收藏
  |  
浏览/下载:10/0
  |  
提交时间:2024/07/03
Robotic grasping
lightweight network
attention strategy
inverted residual
pixel-level
Image captioning: Semantic selection unit with stacked residual attention
期刊论文
OAI收割
IMAGE AND VISION COMPUTING, 2024, 卷号: 144, 页码: 12
作者:
Song, Lifei
;
Li, Fei
;
Wang, Ying
;
Liu, Yu
  |  
收藏
  |  
浏览/下载:34/0
  |  
提交时间:2024/07/03
Image captioning
Semantic attributes
Semantic selection unit
Transformer
Stacked residual attention
基于残差和注意力网络的声呐图像去噪方法
期刊论文
OAI收割
光电工程, 2023, 卷号: 50, 期号: 6
作者:
赵冬冬
;
叶逸飞
;
陈朋
;
梁荣华
;
蔡天诚
  |  
收藏
  |  
浏览/下载:15/0
  |  
提交时间:2023/11/06
forward looking sonar
image denoising
noise simulate
channel attention
dense residual
前视声呐
噪声模拟
图像去噪
通道注意力
密集残差
Multitask Learning with Multiscale Residual Attention for Brain Tumor Segmentation and Classification
期刊论文
OAI收割
Machine Intelligence Research, 2023, 卷号: 20, 期号: 6, 页码: 897-908
作者:
Gaoxiang Li
;
Xiao Hui
;
Wenjing Li
;
Yanlin Luo
  |  
收藏
  |  
浏览/下载:6/0
  |  
提交时间:2024/04/23
Brain tumor segmentation and classification, multitask learning, multiscale residual attention module (MRAM), dynamic weight training, prior knowledge
An attention-guided network for surgical instrument segmentation from endoscopic images
期刊论文
OAI收割
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 卷号: 151, 页码: 11
作者:
Yang, Lei
;
Gu, Yuge
;
Bian, Guibin
;
Liu, Yanhong
  |  
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2023/02/22
Surgical instruments
Deep learning
Semantic segmentation
Residual network
Dual attention mechanism
A shape-guided deep residual network for automated CT lung segmentation
期刊论文
OAI收割
KNOWLEDGE-BASED SYSTEMS, 2022, 卷号: 250, 页码: 10
作者:
Yang, Lei
;
Gu, Yuge
;
Huo, Benyan
;
Liu, Yanhong
;
Bian, Guibin
  |  
收藏
  |  
浏览/下载:46/0
  |  
提交时间:2022/09/19
Deep network architecture
Medical image analysis
Shape stream network
Residual unit
Attention fusion unit
A method to detect sleep apnea using residual attention mechanism network from single-lead ECG signal
期刊论文
OAI收割
BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2022
作者:
Wang, Tao
;
Lu, Changhua
;
Sun, Yining
  |  
收藏
  |  
浏览/下载:36/0
  |  
提交时间:2022/12/23
attention mechanism
ECG signal
R-peak signal
residual network
RR interval signal
sleep apnea
A nondestructive automatic defect detection method with pixelwise segmentation
期刊论文
OAI收割
KNOWLEDGE-BASED SYSTEMS, 2022, 卷号: 242, 页码: 12
作者:
Yang, Lei
;
Fan, Junfeng
;
Huo, Benyan
;
Li, En
;
Liu, Yanhong
  |  
收藏
  |  
浏览/下载:34/0
  |  
提交时间:2022/06/10
Defect detection
Deep architecture
Image segmentation
Attention fusion
Residual dense connection convolution
network
Predicting Taxi-Calling Demands Using Multi-Feature and Residual Attention Graph Convolutional Long Short-Term Memory Networks
期刊论文
OAI收割
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 卷号: 11, 期号: 3, 页码: 14
作者:
Mi, Chunlei
;
Cheng, Shifen
;
Lu, Feng
  |  
收藏
  |  
浏览/下载:35/0
  |  
提交时间:2022/09/21
taxi-calling demands prediction
residual attention graph convolutional long short-term memory networks
deep learning
pattern dependence