中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
西安光学精密机械研究... [2]
计算技术研究所 [1]
长春光学精密机械与物... [1]
自动化研究所 [1]
采集方式
OAI收割 [5]
内容类型
期刊论文 [3]
会议论文 [2]
发表日期
2023 [1]
2022 [2]
2019 [1]
2006 [1]
学科主题
筛选
浏览/检索结果:
共5条,第1-5条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Spectral-Spatial Attention Rotation-Invariant Classification Network for Airborne Hyperspectral Images
期刊论文
OAI收割
DRONES, 2023, 卷号: 7, 期号: 4
作者:
Shi, Yuetian
;
Fu, Bin
;
Wang, Nan
;
Cheng, Yinzhu
;
Fang, Jie
  |  
收藏
  |  
浏览/下载:42/0
  |  
提交时间:2023/05/29
airborne hyperspectral image
hyperspectral image classification
rotation-invariant
local spatial feature enhancement
convolutional neural network
attention mechanism
lightweight feature enhancement
Gradient-Aligned convolution neural network
期刊论文
OAI收割
PATTERN RECOGNITION, 2022, 卷号: 122, 页码: 10
作者:
Hao, You
;
Hu, Ping
;
Li, Shirui
;
Udupa, Jayaram K.
;
Tong, Yubing
  |  
收藏
  |  
浏览/下载:39/0
  |  
提交时间:2021/12/01
Gradient alignment
Rotation equivariant convolution
Rotation invariant neural network
Rotation-Invariant Attention Network for Hyperspectral Image Classification
期刊论文
OAI收割
IEEE Transactions on Image Processing, 2022, 卷号: 31, 页码: 4251-4265
作者:
Zheng, Xiangtao
;
Sun, Hao
;
Lu, Xiaoqiang
;
Xie, Wei
  |  
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2022/07/21
Hyperspectral image classification
convolutional neural network
rotation-invariant network
spectralspatial feature extraction
attention mechanism
Rotaion and Scale-invariant Object Detector for High Resolution Optical Remote Sensing Images
会议论文
OAI收割
日本横滨, 2019年7月29日-2019年8月2日
作者:
Huang H(黄河)
;
Huo CL(霍春雷)
;
Wei FL(魏飞龙)
;
Pan CH(潘春洪)
  |  
收藏
  |  
浏览/下载:73/0
  |  
提交时间:2019/06/24
Rotation-invariant
Scale-invariant
Convolutional Neural Network
Optical Remote Sensing
Object Detection
An object recognition method based on fuzzy theory and BP networks (EI CONFERENCE)
会议论文
OAI收割
ICO20: Optical Information Processing, August 21, 2005 - August 26, 2005, Changchun, China
Chuan W.
;
Ming Z.
;
Dong Y.
收藏
  |  
浏览/下载:19/0
  |  
提交时间:2013/03/25
It is difficult to choose eigenvectors when neural network recognizes object. It is possible that the different object eigenvectors is similar or the same object eigenvectors is different under scaling
shifting
rotation if eigenvectors can not be chosen appropriately. In order to solve this problem
the image is edged
the membership function is reconstructed and a new threshold segmentation method based on fuzzy theory is proposed to get the binary image. Moment invariant of binary image is extracted and normalized. Some time moment invariant is too small to calculate effectively so logarithm of moment invariant is taken as input eigenvectors of BP network. The experimental results demonstrate that the proposed approach could recognize the object effectively
correctly and quickly.