中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共5条,第1-5条 帮助

条数/页: 排序方式:
Spectral-Spatial Attention Rotation-Invariant Classification Network for Airborne Hyperspectral Images 期刊论文  OAI收割
DRONES, 2023, 卷号: 7, 期号: 4
作者:  
Shi, Yuetian;  Fu, Bin;  Wang, Nan;  Cheng, Yinzhu;  Fang, Jie
  |  收藏  |  浏览/下载:42/0  |  提交时间:2023/05/29
Gradient-Aligned convolution neural network 期刊论文  OAI收割
PATTERN RECOGNITION, 2022, 卷号: 122, 页码: 10
作者:  
Hao, You;  Hu, Ping;  Li, Shirui;  Udupa, Jayaram K.;  Tong, Yubing
  |  收藏  |  浏览/下载:39/0  |  提交时间:2021/12/01
Rotation-Invariant Attention Network for Hyperspectral Image Classification 期刊论文  OAI收割
IEEE Transactions on Image Processing, 2022, 卷号: 31, 页码: 4251-4265
作者:  
Zheng, Xiangtao;  Sun, Hao;  Lu, Xiaoqiang;  Xie, Wei
  |  收藏  |  浏览/下载:33/0  |  提交时间:2022/07/21
Rotaion and Scale-invariant Object Detector for High Resolution Optical Remote Sensing Images 会议论文  OAI收割
日本横滨, 2019年7月29日-2019年8月2日
作者:  
Huang H(黄河);  Huo CL(霍春雷);  Wei FL(魏飞龙);  Pan CH(潘春洪)
  |  收藏  |  浏览/下载:73/0  |  提交时间:2019/06/24
An object recognition method based on fuzzy theory and BP networks (EI CONFERENCE) 会议论文  OAI收割
ICO20: Optical Information Processing, August 21, 2005 - August 26, 2005, Changchun, China
Chuan W.; Ming Z.; Dong Y.
收藏  |  浏览/下载:19/0  |  提交时间:2013/03/25
It is difficult to choose eigenvectors when neural network recognizes object. It is possible that the different object eigenvectors is similar or the same object eigenvectors is different under scaling  shifting  rotation if eigenvectors can not be chosen appropriately. In order to solve this problem  the image is edged  the membership function is reconstructed and a new threshold segmentation method based on fuzzy theory is proposed to get the binary image. Moment invariant of binary image is extracted and normalized. Some time moment invariant is too small to calculate effectively so logarithm of moment invariant is taken as input eigenvectors of BP network. The experimental results demonstrate that the proposed approach could recognize the object effectively  correctly and quickly.