中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [3]
西安光学精密机械研究... [3]
光电技术研究所 [2]
地质与地球物理研究所 [1]
长春光学精密机械与物... [1]
数学与系统科学研究院 [1]
更多
采集方式
OAI收割 [11]
内容类型
期刊论文 [6]
会议论文 [4]
学位论文 [1]
发表日期
2024 [1]
2020 [1]
2019 [2]
2016 [2]
2015 [1]
2013 [1]
更多
学科主题
筛选
浏览/检索结果:
共11条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Enhancement and suppression of nonsequential double ionization by spatially inhomogeneous fields
期刊论文
OAI收割
Optics Express, 2024, 卷号: 32, 期号: 11, 页码: 19825-19836
作者:
Luo, Xuan
;
Jiao, Li Guang
;
Liu, Aihua
;
Liu, Xueshen
  |  
收藏
  |  
浏览/下载:3/0
  |  
提交时间:2024/09/13
autofocus
sharpness evaluation function
focusing window
Focal beam resolution analysis of wide-band, wide-azimuth and high-density land 3D seismic acquisition geometries
期刊论文
OAI收割
CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2020, 卷号: 63, 期号: 10, 页码: 3868-3885
作者:
Chang ZiJuan
;
Wei Wei
;
Fu LiYun
;
Qin Nan
;
Su Jun
  |  
收藏
  |  
浏览/下载:34/0
  |  
提交时间:2020/12/07
Wide-band
wide-azimuth and high-density seismic acquisition
Focal beam resolution analysis
Imaging sharpness
Research of Image Sharpness Assessment Algorithm for Autofocus
会议论文
OAI收割
Xiamen, China, 2019-07-05
作者:
Her, Lilin
;
Yang, Xiaojun
  |  
收藏
  |  
浏览/下载:44/0
  |  
提交时间:2020/05/28
sharpness evaluation function
autofocus
gradient operator
brenner algorithm
Auto-focus algorithm based on improved SML evaluation function
会议论文
OAI收割
Beijing, China, 2019-07-07
作者:
Ma, Xiaoyu
;
Li, Qiaoling
  |  
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2020/03/04
auto-focus
sharpness evaluation function
threshold
gradient
SML
image processing
A blur estimation and detection method for out-of-focus images
期刊论文
OAI收割
MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 卷号: 75, 期号: 18, 页码: 10807-10822
作者:
Hong, Yuzhen
;
Ren, Guoqiang
;
Liu, Enhai
;
Sun, Jian
收藏
  |  
浏览/下载:42/0
  |  
提交时间:2016/11/15
Sharpness
Blurriness
Blur detection
No-reference
Out-of-focus
PSF
Gradient profile
A no-reference image blurriness metric in the spatial domain
期刊论文
OAI收割
OPTIK, 2016, 卷号: 127, 期号: 14, 页码: 5568-5575
作者:
Hong, Yuzhen
;
Ren, Guoqiang
;
Liu, Enhai
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2016/10/27
Sharpness metric
Blurriness metric
Image quality assessment
Spatial domain
JNB
No-reference
Tumor border sharpness correlates with HLA-G expression in low-grade gliomas
期刊论文
OAI收割
JOURNAL OF NEUROIMMUNOLOGY, 2015, 卷号: 282, 页码: 1-6
作者:
Wang, Yinyan
;
Fan, Xing
;
Li, Hongming
;
Lin, Zhiguo
;
Bao, Hongbo
收藏
  |  
浏览/下载:41/0
  |  
提交时间:2015/09/17
HLA-G
Low-grade glioma
Sharpness of the tumor border
Methods of Depth Measurement and Image Fusion Based on Multi-focus Micro-images
会议论文
OAI收割
Guiyang, 25-27 May 2013
作者:
Yin YingJie
;
Wang, Xingang
;
Xu, De
;
Zhang, Zhengtao
;
Bai, Mingran
  |  
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2016/06/20
Depth Measurement
Depth Of Field
Image Fusion
Micro-image
Multi-focus
Sharpness Evaluation Function
视频画质增强算法及其硬件实现
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2011
作者:
汪彦刚
收藏
  |  
浏览/下载:174/0
  |  
提交时间:2015/09/02
视频增强
硬件体系结构
视频缩放
锐度增强
自动曝光控制
自动白平衡
Video enhancement
Hardware architecture
Video scaling
Sharpness enhancement
Auto exposure control
Auto white balance
Autofocusing technique based on image processing for remote-sensing camera (EI CONFERENCE)
会议论文
OAI收割
International Symposium on Photoelectronic Detection and Imaging 2007 - Image Processing, September 9, 2007 - September 12, 2007, Beijing, China
作者:
Wang X.
;
Xu S.-Y.
;
Wang X.
;
Wang X.
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2013/03/25
The key to the auto-focusing technique based on image processing is the selection of focus measure reflecting image definition. Usually the measures derived are on the premise of the images acquired with the same scene. As for the remote-sensing camera working in linear CCD push-broom imaging mode
the premise doesn't exist because the scenes shot are different at any moment
which brings about difficulties to the selection of the focus measure. To evaluate the image definition
the focus measure based on blur estimation for rough adjustment is proposed to estimate the focused position by only two different lens positions
which greatly saves the auto-focusing time. Another evaluation function based on edge sharpness is developed to find best imaging position in the narrow range. Simulations show that the combination of the two measures has the advantages of rapid reaction and high accuracy.