中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究所 [1]
成都山地灾害与环境研... [1]
长春光学精密机械与物... [1]
遥感与数字地球研究所 [1]
采集方式
OAI收割 [4]
内容类型
期刊论文 [2]
SCI/SSCI论文 [1]
会议论文 [1]
发表日期
2020 [1]
2016 [1]
2015 [1]
2011 [1]
学科主题
Physical G... [1]
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
中巴经济走廊DMSP/OLS与NPP/VIIRS夜光数据辐射一致性校正
期刊论文
OAI收割
遥感学报, 2020, 卷号: 24, 期号: 2, 页码: 149-160
作者:
梁丽
;
边金虎
;
李爱农
;
冯文兰
;
雷光斌
  |  
收藏
  |  
浏览/下载:97/0
  |  
提交时间:2020/04/29
DMSP/OLS
Intercalibration
Invariant regions
Night
time lights
NPP/VIIRS
Pakistan
Urban expansion in China and its spatial-temporal differences over the past four decades
期刊论文
OAI收割
JOURNAL OF GEOGRAPHICAL SCIENCES, 2016, 卷号: 26, 期号: 10, 页码: 1477-1496
作者:
Liu, Fang
;
Zhang, Zengxiang
;
Shi, Lifeng
;
Zhao, Xiaoli
;
Xu, Jinyong
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2017/04/24
LAND-COVER CHANGE
URBANIZATION DYNAMICS
IMPERVIOUS SURFACES
SATELLITE IMAGERY
HUMAN-SETTLEMENTS
SPATIAL-PATTERNS
DRIVING FORCES
CITY LIGHTS
TIME-SERIES
EXPANSION
Night-time light derived estimation of spatio-temporal characteristics of urbanization dynamics using DMSP/OLS satellite data
SCI/SSCI论文
OAI收割
2015
作者:
Ma T.
;
Zhou, Y. K.
;
Zhou, C. H.
收藏
  |  
浏览/下载:60/0
  |  
提交时间:2015/12/09
Night-time light
Urbanization
DMSP/OLS
Quadratic relationship
China's cities
urban sprawl
city lights
imagery
gas
world
proxy
Neural network based online traffic signal controller design with reinforcement training (EI CONFERENCE)
会议论文
OAI收割
14th IEEE International Intelligent Transportation Systems Conference, ITSC 2011, October 5, 2011 - October 7, 2011, Washington, DC, United states
Dai Y.
;
Hu J.
;
Zhao D.
;
Zhu F.
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2013/03/25
Traffic congestion leads to problems like delays
decreasing flow rate
and higher fuel consumption. Consequently
keeping traffic moving as efficiently as possible is not only important to economy but also important to environment. Traffic system is a large complex nonlinear stochastic system. Traditional mathematical methods have some limitations when they are applied in traffic control. Thus
computational intelligence (CI) technologies gain more and more attentions. Neural Networks (NNs) is a well developed CI technology with lots of promising applications in traffic signal control (TSC). In this paper
a neural network (NN) based signal controller is designed to control the traffic lights in an urban traffic road network. Scenarios of simulation are conducted under a microscopic traffic simulation software. Several criterions are collected. Results demonstrate that through online reinforcement training the controllers obtain better control effects than the widely used pre-time and actuated methods under various traffic conditions. 2011 IEEE.