中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共8条,第1-8条 帮助

条数/页: 排序方式:
Scattered Points Interpolation with Globally Smooth B-Spline Surface using Iterative Knot Insertion 期刊论文  OAI收割
COMPUTER-AIDED DESIGN, 2022, 卷号: 148, 页码: 17
作者:  
Jiang, Xin;  Wang, Bolun;  Huo, Guanying;  Su, Cheng
  |  收藏  |  浏览/下载:39/0  |  提交时间:2022/07/25
纳豆芽孢杆菌men基因过表达菌株的构建及提高溶氧强化MK-7合成 期刊论文  OAI收割
应用与环境生物学报, 2022, 卷号: 28
作者:  
李楚;  王晗;  王丽;  王鹏;  郑之明
  |  收藏  |  浏览/下载:15/0  |  提交时间:2023/11/10
Corrigendum: Building a Genetic Manipulation Tool Box for Orchid Biology: Identification of Constitutive Promoters and Application of CRISPR/Cas9 in the Orchid, Dendrobium officinale 期刊论文  OAI收割
Frontiers in Plant Science, 2017, 卷号: 6, 期号: X, 页码: e664
作者:  
Kui L;  Chen HT;  Zhang YS;  Yan L;  Zhong CF
收藏  |  浏览/下载:62/0  |  提交时间:2017/05/02
Building a Genetic Manipulation Tool Box for Orchid Biology: Identification of Constitutive Promoters and Application of CRISPR/Cas9 in the Orchid, Dendrobium officinale 期刊论文  OAI收割
Frontiers in Plant Science, 2017, 卷号: 7, 期号: X, 页码: e2036
作者:  
Kui L;  Chen HT;  Zhang YS;  Yan L[6];  Zhong CF
收藏  |  浏览/下载:38/0  |  提交时间:2017/02/08
Speeding up the high-accuracy surface modelling method with GPU SCI/SSCI论文  OAI收割
2015
作者:  
Yan C. Q.;  Zhao, G.;  Yue, T. X.;  Chen, C. F.;  Liu, J. M.
收藏  |  浏览/下载:34/0  |  提交时间:2015/12/09
Phagemid Vectors for Phage Display: Properties, Characteristics and Construction 期刊论文  OAI收割
JOURNAL OF MOLECULAR BIOLOGY, 2012, 卷号: 417, 期号: 3, 页码: 129-143
作者:  
Qi, Huan;  Lu, Haiqin;  Qiu, Hua-Ji;  Petrenko, Valery;  Liu, Aihua
收藏  |  浏览/下载:33/0  |  提交时间:2012/11/10
基于多系统融合的统计机器翻译模型及系统研究 学位论文  OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2008
作者:  
杜金华
收藏  |  浏览/下载:31/0  |  提交时间:2015/09/02
Wavelet packet and neural network basis medical image compression (EI CONFERENCE) 会议论文  OAI收割
4th International Conference on Photonics and Imaging in Biology and Medicine, September 3, 2005 - September 6, 2005, Tianjin, China
Zhao X.; Wei J.; Zhai L.
收藏  |  浏览/下载:29/0  |  提交时间:2013/03/25
It is difficult to get high compression ratio and good reconstructed image by conventional methods  we give a new method of compression on medical image. It is to decompose and reconstruct the medical image by wavelet packet. Before the construction the image  use neural network in place of other coding method to code the coefficients in the wavelet packet domain. By using the Kohonen's neural network algorithm  not only for its vector quantization feature  but also for its topological property. This property allows an increase of about 80% for the compression rate. Compared to the JPEG standard  this compression scheme shows better performances (in terms of PSNR) for compression rates higher than 30. This method can get big compression ratio and perfect PSNR. Results show that the image can be compressed greatly and the original image can be recovered well. In addition  the approach can be realized easily by hardware.