中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
心理研究所 [6]
长春光学精密机械与物... [2]
上海神经科学研究所 [2]
西安光学精密机械研究... [2]
生物物理研究所 [1]
自动化研究所 [1]
更多
采集方式
OAI收割 [14]
内容类型
期刊论文 [11]
会议论文 [3]
发表日期
2022 [1]
2020 [2]
2017 [1]
2016 [1]
2014 [1]
2012 [1]
更多
学科主题
认知神经科学 [3]
Neuroscien... [2]
Neuroscien... [1]
电子、电信技术::信... [1]
电子、电信技术::计... [1]
筛选
浏览/检索结果:
共14条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
From separate items to an integrated unit in visual working memory: Similarity chunking vs. configural grouping
期刊论文
OAI收割
COGNITION, 2022, 卷号: 225, 页码: 12
作者:
Zhang, Jiafeng
;
Du, Feng
  |  
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2022/08/22
Visual working memory
Similarity chunking
Kanizsa
Configural cue
Proposal-based visual tracking using spatial cascaded transformed region proposal network
期刊论文
OAI收割
Sensors (Switzerland), 2020, 卷号: 20, 期号: 17, 页码: 1-20
作者:
Zhang, Ximing
;
Luo, Shujuan
;
Fan, Xuewu
  |  
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2020/10/16
visual tracking
spatial cascaded networks
shrinkage loss
multi-cue proposals re-ranking
region proposals networks
视觉工作记忆回溯线索效应的产生机制认知阶段分离
期刊论文
OAI收割
心理学报, 2020, 卷号: 52, 期号: 4, 页码: 399-413
作者:
叶超雄
;
胡中华
;
梁腾飞
;
张加峰
;
许茜如
  |  
收藏
  |  
浏览/下载:115/0
  |  
提交时间:2020/06/12
visual working memory
retro-cue effect
cognitive phase separation hypothesis
internal attention
recall task
视觉工作记忆
回溯线索效应
认知阶段分离假设
内部注意
回忆报告范式
Selectively Maintaining Object Features within Visual Working Memory: An ERP Study
会议论文
OAI收割
曲阜, 2017.7.2
作者:
Xiaowei Ding
;
Kaifeng He
;
Zaifeng Gao
;
a, Mowei Shen
  |  
收藏
  |  
浏览/下载:45/0
  |  
提交时间:2017/12/28
Visual working memory
manipulation
retro-cue
highly-discriminable feature
fine-grained information
Decentralized Multisensory Information Integration in Neural Systems
期刊论文
OAI收割
JOURNAL OF NEUROSCIENCE, 2016, 卷号: 36, 期号: 2, 页码: 532-547
作者:
Zhang, WH
;
Chen, AH
;
Rasch, MJ
;
Wu, S
收藏
  |  
浏览/下载:67/0
  |  
提交时间:2016/09/14
VENTRAL INTRAPARIETAL AREA
SPATIAL WORKING-MEMORY
SUPERIOR TEMPORAL AREA
NETWORK MODEL
POPULATION CODES
CUE INTEGRATION
VISUAL-CORTEX
BAYESIAN-INFERENCE
PARIETAL CORTEX
MACAQUE
Cooperative fusion particle filter tracker
期刊论文
OAI收割
SCIENCE CHINA-INFORMATION SCIENCES, 2014, 卷号: 57, 期号: 8
作者:
Wang LingFeng
;
Yan HongPing
;
Pan ChunHong
收藏
  |  
浏览/下载:34/0
  |  
提交时间:2015/08/12
visual tracking
multi-cue fusion
cooperative fusion
CoFPF-tracker
sum-tracker
product-tracker
Causal Links between Dorsal Medial Superior Temporal Area Neurons and Multisensory Heading Perception
期刊论文
OAI收割
JOURNAL OF NEUROSCIENCE, 2012, 卷号: 32, 期号: 7, 页码: 2299-2313
Gu, Yong
;
DeAngelis, Gregory C.
;
Angelaki, Dora E.
收藏
  |  
浏览/下载:43/0
  |  
提交时间:2012/07/13
VENTRAL INTRAPARIETAL AREA
PARIETOINSULAR VESTIBULAR CORTEX
VISUAL RESPONSE PROPERTIES
SELF-MOTION PERCEPTION
OPTIC FLOW STIMULI
MACAQUE MONKEY
MST NEURONS
ELECTRICAL MICROSTIMULATION
DEPTH-PERCEPTION
CUE INTEGRATION
Visual responses to contrast-defined contours with equally spatial-scaled carrier in cat area 18
期刊论文
OAI收割
BRAIN RESEARCH BULLETIN, 2011, 卷号: 86, 期号: 1-2, 页码: 97-105
Gou, Bin
;
Li, Yuhui
;
Li, Bing
;
李兵
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2013/12/25
Visual cortex
Illusory contours
Second-order cue
Form cue invariance
Spatiotemporal energy model
Color to Gray: Visual Cue Preservation
期刊论文
OAI收割
ieee transactions on pattern analysis and machine intelligence, 2010, 卷号: 32, 期号: 9, 页码: 1537-1552
作者:
Song, Mingli
;
Tao, Dacheng
;
Chen, Chun
;
Li, Xuelong
;
Chen, Chang Wen
收藏
  |  
浏览/下载:205/17
  |  
提交时间:2011/01/11
Color to gray
probabilistic graphical model
visual cue
Integrated intensity, orientation code and spatial information for robust tracking (EI CONFERENCE)
会议论文
OAI收割
2007 2nd IEEE Conference on Industrial Electronics and Applications, ICIEA 2007, May 23, 2007 - May 25, 2007, Harbin, China
作者:
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2013/03/25
real-time tracking is an important topic in computer vision. Conventional single cue algorithms typically fail outside limited tracking conditions. Integration of multimodal visual cues with complementary failure modes allows tracking to continue despite losing individual cues. In this paper
we combine intensity
orientation codes and special information to form a new intensity-orientation codes-special (IOS) feature to represent the target. The intensity feature is not affected by the shape variance of object and has good stability. Orientation codes matching is robust for searching object in cluttered environments even in the cases of illumination fluctuations resulting from shadowing or highlighting
etc The spatial locations of the pixels are used which allow us to take into account the spatial information which is lost in traditional histogram. Histograms of intensity
orientation codes and spatial information are employed for represent the target Mean shift algorithm is a nonparametric density estimation method. The fast and optimal mode matching can be achieved by this method. In order to reduce the compute time
we use the mean shift procedure to reach the target localization. Experiment results show that the new method can successfully cope with clutter
partial occlusions
illumination change
and target variations such as scale and rotation. The computational complexity is very low. If the size of the target is 3628 pixels
it only needs 12ms to complete the method. 2007 IEEE.