中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
基于单通道sEMG分解的手部动作识别方法

文献类型:期刊论文

作者熊安斌; 丁其川; 赵新刚; 韩建达; 刘光军
刊名机械工程学报
出版日期2016
卷号52期号:7页码:6-13
关键词表面肌电信号 运动单元动作电位序列 分层聚类 主元分析支持向量机
ISSN号0577-6686
其他题名Classification of Hand Gestures Based on Single-Channel sEMG Decomposition
产权排序1
通讯作者熊安斌
中文摘要表面肌电信号(surface electromyography,s EMG)已广泛应用于手部动作识别。为提高动作识别精度,研究者往往需要采集多个通道s EMG信号,从而增加应用复杂性,针对这一情况,提出一种基于单通道s EMG分解的手部动作识别方法。使用单通道电极采集人体上臂肌肉s EMG,将其分解为6个运动单元动作电位序列,过程包括:二阶差分滤波、阈值计算、尖峰检测、分层聚类;然后,提取绝对值积分、最大值、非零中值、半窗能量等特征,并采用主元分析法降维;最后,利用支持向量机分类识别5种不同手部动作,精度达到80.4%。而采用未融合s EMG分解的传统方法,动作识别精度仅有约70%。
英文摘要Surface electromyography (sEMG) has been applied extensively in gestures recognition. In order to improve the recognition accuracy, multi-channel sEMG is conventionally sampled, which also increases the complexity of applications. To solve the problem, a novel gesture recognition method based on sEMG decomposition is proposed. Sampling sEMG signals from the muscle of human upper limb by a single-channel electrode; then decomposing the sEMG into six motor unit action potential trains (MUAPTs) and the decomposition process includes 2-order differential filtering, threshold calculation, spike detection and hierarchical clustering. Afterwards, the features, including integral of absolute value, maximum value, median of non-zero value and semi-window energy, are extracted to form a feature matrix, whose dimension is then reduced by the principal component analysis. Finally, support vector machine is employed to recognize five different hand gestures, and 80.4% of accuracy can be obtained, while only about 70% of recognition accuracy can be achieved by traditional methods without sEMG decomposition.
收录类别EI ; CSCD
语种中文
CSCD记录号CSCD:5677302
源URL[http://ir.sia.cn/handle/173321/17580]  
专题沈阳自动化研究所_机器人学研究室
推荐引用方式
GB/T 7714
熊安斌,丁其川,赵新刚,等. 基于单通道sEMG分解的手部动作识别方法[J]. 机械工程学报,2016,52(7):6-13.
APA 熊安斌,丁其川,赵新刚,韩建达,&刘光军.(2016).基于单通道sEMG分解的手部动作识别方法.机械工程学报,52(7),6-13.
MLA 熊安斌,et al."基于单通道sEMG分解的手部动作识别方法".机械工程学报 52.7(2016):6-13.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。