中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
热门
An Adaptive UKF Algorithm for the State and Parameter Estimations of a Mobile Robot

文献类型:期刊论文

作者Song Q(宋崎); Han JD(韩建达)
刊名自动化学报
出版日期2008
卷号34期号:1页码:72-79
关键词Adaptive Unscented Kalman filter (UKF) innovation MIT rule process covariance
ISSN号1874-1029
产权排序1
中文摘要For improving the estimation accuracy and the convergence speed of the unscented Kalman filter (UKF), a novel adaptive filter method is proposed. The error between the covariance matrices of innovation measurements and their corresponding estimations/predictions is utilized as the cost function. On the basis of the MIT rule, an adaptive algorithm is designed to update the covariance of the process uncertainties online by minimizing the cost function. The updated covariance is fed back into the normal UKF. Such an adaptive mechanism is intended to compensate the lack of a priori knowledge of the process uncertainty distribution and to improve the performance of UKF for the active state and parameter estimations. The asymptotic properties of this adaptive UKF are discussed. Simulations are conducted using an omni-directional mobile robot, and the results are compared with those obtained by normal UKF to demonstrate its effectiveness and advantage over the previous methods.
收录类别EI ; CSCD
资助信息Supported by National High Technology Research and Development Program of China(863 Program);; Hi-Tech Research and Development Program of China(2003AA421020)
语种英语
公开日期2012-05-29
源URL[http://ir.sia.cn/handle/173321/7304]  
专题沈阳自动化研究所_机器人学研究室
推荐引用方式
GB/T 7714
Song Q,Han JD. An Adaptive UKF Algorithm for the State and Parameter Estimations of a Mobile Robot[J]. 自动化学报,2008,34(1):72-79.
APA Song Q,&Han JD.(2008).An Adaptive UKF Algorithm for the State and Parameter Estimations of a Mobile Robot.自动化学报,34(1),72-79.
MLA Song Q,et al."An Adaptive UKF Algorithm for the State and Parameter Estimations of a Mobile Robot".自动化学报 34.1(2008):72-79.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。