Incremental Rotation Averaging
文献类型:期刊论文
作者 | Gao, Xiang2![]() ![]() ![]() |
刊名 | INTERNATIONAL JOURNAL OF COMPUTER VISION
![]() |
出版日期 | 2021-01-16 |
页码 | 15 |
关键词 | Rotation averaging Incremental estimation Accuracy and robustness |
ISSN号 | 0920-5691 |
DOI | 10.1007/s11263-020-01427-7 |
通讯作者 | Liu, Hongmin(hmliu_82@163.com) ; Shen, Shuhan(shshen@nlpr.ia.ac.cn) |
英文摘要 | In this paper, we present a simple yet effective rotation averaging pipeline, termed Incremental Rotation Averaging (IRA), which is inspired by the well-developed incremental Structure from Motion (SfM) techniques. Unlike the traditional rotation averaging methods which estimate all the absolute rotations simultaneously and focus on designing either robust loss function or outlier filtering strategy, here the absolute rotations are estimated in an incremental way. Similar to the incremental SfM, our IRA is robust to relative rotation outliers and could achieve accurate rotation averaging results. In addition, we propose several key techniques, such as initial triplet and Next-Best-View selection, Weighted Local/Global Optimization, and Re-Rotation Averaging, to push the rotation averaging results one step further. Ablation studies and comparison experiments on the 1DSfM, Campus, and San Francisco datasets demonstrate the effectiveness of our IRA and its advantages over the state-of-the-art rotation averaging methods in accuracy and robustness. |
资助项目 | National Key Research and Development Program of China[2020YFB1313002] ; National Science Foundation of China[62003319] ; National Science Foundation of China[62076026] ; National Science Foundation of China[61873265] ; Shandong Provincial Natural Science Foundation[ZR2020QF075] ; China Postdoctoral Science Foundation[2020M682239] ; National Laboratory of Pattern Recognition[202000010] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000608098500001 |
出版者 | SPRINGER |
资助机构 | National Key Research and Development Program of China ; National Science Foundation of China ; Shandong Provincial Natural Science Foundation ; China Postdoctoral Science Foundation ; National Laboratory of Pattern Recognition |
源URL | [http://ir.ia.ac.cn/handle/173211/42593] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_机器人视觉团队 中科院工业视觉智能装备工程实验室 |
通讯作者 | Liu, Hongmin; Shen, Shuhan |
作者单位 | 1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China 2.Ocean Univ China, Coll Engn, Qingdao 266100, Peoples R China 3.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China 4.Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China |
推荐引用方式 GB/T 7714 | Gao, Xiang,Zhu, Lingjie,Xie, Zexiao,et al. Incremental Rotation Averaging[J]. INTERNATIONAL JOURNAL OF COMPUTER VISION,2021:15. |
APA | Gao, Xiang,Zhu, Lingjie,Xie, Zexiao,Liu, Hongmin,&Shen, Shuhan.(2021).Incremental Rotation Averaging.INTERNATIONAL JOURNAL OF COMPUTER VISION,15. |
MLA | Gao, Xiang,et al."Incremental Rotation Averaging".INTERNATIONAL JOURNAL OF COMPUTER VISION (2021):15. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。