Force Sensorless Admittance Control for Teleoperation of Uncertain Robot Manipulator Using Neural Networks
文献类型:期刊论文
作者 | Yang, Chenguang5; Peng, Guangzhu2; Cheng, Long3,4![]() |
刊名 | IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS
![]() |
出版日期 | 2021-05-01 |
卷号 | 51期号:5页码:3282-3292 |
关键词 | Robot sensing systems Force Robot kinematics Artificial neural networks Admittance Torque Admittance control error transformation force observer Kinect neural adaptive control neural networks (NNs) robot |
ISSN号 | 2168-2216 |
DOI | 10.1109/TSMC.2019.2920870 |
通讯作者 | Yang, Chenguang(cyang@ieee.org) |
英文摘要 | In this paper, a force sensorless control scheme based on neural networks (NNs) is developed for interaction between robot manipulators and human arms in physical collision. In this scheme, the trajectory is generated by using geometry vector method with Kinect sensor. To comply with the external torque from the environment, this paper presents a sensorless admittance control approach in joint space based on an observer approach, which is used to estimate external torques applied by the operator. To deal with the tracking problem of the uncertain manipulator, an adaptive controller combined with the radial basis function NN (RBFNN) is designed. The RBFNN is used to compensate for uncertainties in the system. In order to achieve the prescribed tracking precision, an error transformation algorithm is integrated into the controller. The Lyapunov functions are used to analyze the stability of the control system. The experiments on the Baxter robot are carried out to demonstrate the effectiveness and correctness of the proposed control scheme. |
资助项目 | Engineering and Physical Sciences Research Council[EP/S001913] ; National Natural Science Foundation of China[61873268] ; National Natural Science Foundation of China[61633016] ; Beijing Municipal Natural Science Foundation[L182060] |
WOS研究方向 | Automation & Control Systems ; Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000640749000055 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | Engineering and Physical Sciences Research Council ; National Natural Science Foundation of China ; Beijing Municipal Natural Science Foundation |
源URL | [http://ir.ia.ac.cn/handle/173211/44337] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_先进机器人控制团队 |
通讯作者 | Yang, Chenguang |
作者单位 | 1.Univ Sci & Technol China, Dept Automat, Hefei 230026, Peoples R China 2.Univ Macau, Fac Sci & Technol, Dept Comp & Informat Sci, Macau 999078, Peoples R China 3.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China 4.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China 5.Univ West England, Bristol Robot Lab, Bristol BS16 1QY, Avon, England 6.Kunming Univ Sci & Technol, Fac Mech & Elect Engn, Kunming 650500, Yunnan, Peoples R China |
推荐引用方式 GB/T 7714 | Yang, Chenguang,Peng, Guangzhu,Cheng, Long,et al. Force Sensorless Admittance Control for Teleoperation of Uncertain Robot Manipulator Using Neural Networks[J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS,2021,51(5):3282-3292. |
APA | Yang, Chenguang,Peng, Guangzhu,Cheng, Long,Na, Jing,&Li, Zhijun.(2021).Force Sensorless Admittance Control for Teleoperation of Uncertain Robot Manipulator Using Neural Networks.IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS,51(5),3282-3292. |
MLA | Yang, Chenguang,et al."Force Sensorless Admittance Control for Teleoperation of Uncertain Robot Manipulator Using Neural Networks".IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS 51.5(2021):3282-3292. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。