中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Neural Control of Robot Manipulators With Trajectory Tracking Constraints and Input Saturation

文献类型:期刊论文

作者Yang, Chenguang1; Huang, Dianye1; He, Wei2,3; Cheng, Long4,5
刊名IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
出版日期2021-09-01
卷号32期号:9页码:4231-4242
关键词Manipulators Lyapunov methods Robot kinematics Trajectory tracking Automation Barrier Lyapunov function (BLF) constrained control input saturation robot manipulator
ISSN号2162-237X
DOI10.1109/TNNLS.2020.3017202
通讯作者Yang, Chenguang(cyang@ieee.org)
英文摘要This article presents a control scheme for the robot manipulator's trajectory tracking task considering output error constraints and control input saturation. We provide an alternative way to remove the feasibility condition that most BLF-based controllers should meet and design a control scheme on the premise that constraint violation possibly happens due to the control input saturation. A bounded barrier Lyapunov function is proposed and adopted to handle the output error constraints. Besides, to suppress the input saturation effect, an auxiliary system is designed and emerged into the control scheme. Moreover, a simplified RBFNN structure is adopted to approximate the lumped uncertainties. Simulation and experimental results demonstrate the effectiveness of the proposed control scheme.
WOS关键词NONLINEAR-SYSTEMS
资助项目National Nature Science Foundation of China (NSFC)[61811530281] ; National Nature Science Foundation of China (NSFC)[61861136009] ; National Nature Science Foundation of China (NSFC)[U1913209] ; National Nature Science Foundation of China (NSFC)[61873268] ; Guangdong Regional Joint Foundation[2019B1515120076] ; Fundamental Research for the Central Universities ; Beijing Municipal Natural Science Foundation[JQ19020] ; Beijing Municipal Natural Science Foundation[L182060]
WOS研究方向Computer Science ; Engineering
语种英语
WOS记录号WOS:000692208800039
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Nature Science Foundation of China (NSFC) ; Guangdong Regional Joint Foundation ; Fundamental Research for the Central Universities ; Beijing Municipal Natural Science Foundation
源URL[http://ir.ia.ac.cn/handle/173211/45938]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_先进机器人控制团队
通讯作者Yang, Chenguang
作者单位1.South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China
2.Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
3.Univ Sci & Technol Beijing, Inst Artificial Intelligence, Beijing 100083, Peoples R China
4.Chinese Acad Sci, State Key Lab Management & Control Complex Syst, Inst Automat, Beijing 100190, Peoples R China
5.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Yang, Chenguang,Huang, Dianye,He, Wei,et al. Neural Control of Robot Manipulators With Trajectory Tracking Constraints and Input Saturation[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2021,32(9):4231-4242.
APA Yang, Chenguang,Huang, Dianye,He, Wei,&Cheng, Long.(2021).Neural Control of Robot Manipulators With Trajectory Tracking Constraints and Input Saturation.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,32(9),4231-4242.
MLA Yang, Chenguang,et al."Neural Control of Robot Manipulators With Trajectory Tracking Constraints and Input Saturation".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 32.9(2021):4231-4242.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。