State feedback controller design for affine parameter-dependent LPV systems
文献类型:会议论文
作者 | Liu Z(刘重)![]() ![]() ![]() ![]() ![]() |
出版日期 | 2017 |
会议日期 | July 9-14, 2017 |
会议地点 | Toulouse, France |
关键词 | Linear Parameter-varying Affine Parameter-dependence Lyapunov Stability Guaranteed Cost Control Linear Quadratic Regulator Linear Matrix Inequality |
页码 | 9760-9765 |
英文摘要 | Affine quadratic stability (AQS) is usually devoted to stability analysis of the linear parameter-varying (LPV) system. In this paper, the main contribution is to put forward state feedback control methods for the affine parameter-dependent LPV system based on AQS, guaranteed cost control and LPV linear quadratic regulator (LQR) included for good control performance, and test their conservatism. The parameter-dependent Lyapunov function from AQS could be transformed to linear matrix inequality (LMI) problems for tractability, and the convexity would ensure avoidance of solving infinite LMIs. In this way, parameter-dependent state feedback controllers could be gotten, and comparison between them is applied to analyze the admitted conservatism numerically by simulation results. |
产权排序 | 1 |
会议录 | 20th World Congress of the International-Federation-of-Automatic-Control (IFAC)
![]() |
会议录出版者 | IFAC |
会议录出版地 | Laxenburg, AUSTRIA |
语种 | 英语 |
ISSN号 | 2405-8963 |
WOS记录号 | WOS:000423965100123 |
源URL | [http://ir.sia.cn/handle/173321/21354] ![]() |
专题 | 沈阳自动化研究所_机器人学研究室 |
通讯作者 | Liu Z(刘重) |
作者单位 | 1.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016, Shenyang, Liaoning Province, P.R.China 2.University of Chinese Academy of Sciences, 100049, Beijing, P.R.China 3.CRAN UMR 7039, CNRS, University of Lorraine, Faculte des Sciences et Techniques, B.P. 70239, 54506 VANDOEUVRE-LES-NANCY, France |
推荐引用方式 GB/T 7714 | Liu Z,Theilliol, Didier,Gu F,et al. State feedback controller design for affine parameter-dependent LPV systems[C]. 见:. Toulouse, France. July 9-14, 2017. |
入库方式: OAI收割
来源:沈阳自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。