中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Target tracking based on neural network depth feature and texture fusion

文献类型:会议论文

作者Cao YZ(曹永战)1; Liu, Meiju1; Yang SK(杨尚奎)3; Yang, Guodong2; Chen P(陈鹏)3; Zhu SY(朱树云)3; Ge Z(葛壮)3; Liu YW(刘玉旺)3
出版日期2019
会议日期November 29 - December 1, 2019
会议地点Harbin, China
页码1-6
英文摘要This paper presents a method of target tracking based on convolution neural network and texture feature fusion. The lower layer of the convolutional neural network can extract some spatial structure, shape and other features of the target. High-level level can extract relatively abstract semantic information. In this paper, vgg-m convolutional neural network is adopted to realize tracking by adaptive fusion of the extracted depth features of Conv2 and Conv5 with the texture features extracted by two-dimensional Gabor filtering. In this paper, the experimental analysis of this method is carried out on the OTB2013 data set, and the results show that this method can achieve more accurate positioning of the target and has a strong timeliness.
产权排序2
会议录2019 5th International Conference on Energy Equipment Science and Engineering
会议录出版者IOP
会议录出版地Bristol, UK
语种英语
ISSN号1755-1307
WOS记录号WOS:000562932400019
源URL[http://ir.sia.cn/handle/173321/26754]  
专题沈阳自动化研究所_空间自动化技术研究室
通讯作者Liu YW(刘玉旺)
作者单位1.Information and Control Engineering Faculty, Shenyang Jianzhu University, Shenyang, LIAONING 110168, China
2.School of Mechanical Engineering and Automation, Northeastern University 3 Wenhua Street, Shenyang 110819, China
3.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
推荐引用方式
GB/T 7714
Cao YZ,Liu, Meiju,Yang SK,et al. Target tracking based on neural network depth feature and texture fusion[C]. 见:. Harbin, China. November 29 - December 1, 2019.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。