中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A model-based approach to solve the sparse reward problem

文献类型:会议论文

作者Li SL(李帅龙)1,2,3; Wang XH(王晓辉)1,2,3; Zhang W(张伟)1,2; Zhang X(张鑫)1,2
出版日期2021
会议日期August 20-22, 2021
会议地点Virtual, Yibin, China
关键词reinforcement learning model-based method the sparsity of reward
页码476-480
英文摘要For reinforcement learning (RL) algorithms, the sparsity of reward has always been a problem to be solved. Because reinforcement learning cannot get effective feedback in most cases, the agent is difficult to learn effectively. We propose a model-based algorithm to create extra rewards and increase reward density to make it easy to learning. To reshape rewards, we use model error as an extra reward and add it to the return. We test our approach in the Google Research Football Environment, and our algorithm gets good results.
源文献作者Chongqing University ; et al. ; IEEE ; Sichuan University of Science and Engineering ; Tongji University ; University of Electronic Science and Technology of China
产权排序1
会议录2021 4th International Conference on Pattern Recognition and Artificial Intelligence, PRAI 2021
会议录出版者IEEE
会议录出版地NEW YORK
语种英语
ISBN号978-1-6654-1322-0
源URL[http://ir.sia.cn/handle/173321/29856]  
专题沈阳自动化研究所_空间自动化技术研究室
通讯作者Li SL(李帅龙)
作者单位1.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
2.Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
推荐引用方式
GB/T 7714
Li SL,Wang XH,Zhang W,et al. A model-based approach to solve the sparse reward problem[C]. 见:. Virtual, Yibin, China. August 20-22, 2021.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。