中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Monocular adaptive inverse depth filtering algorithm based on Gaussian model

文献类型:会议论文

作者Xu, Chenglong1,3; Wu CD(吴成东)3; Qu DK(曲道奎)1,2; Sun HB(孙海波)2,3; Song JL(宋吉来)1,2; Wang, Xiaofeng1
出版日期2020
会议日期August 22-24, 2020
会议地点Hefei, China
关键词Monocular depth estimation Inverse depth filtering Gaussian model Normalized cross-correlation
页码4943-4947
英文摘要This paper presents an adaptive filtering algorithm for monocular depth estimation. This is a geometric calculation method under the assumption that the inverse depth conforms to the Gaussian distribution. In the inverse depth update, the average value of the historical stable points is introduced to smooth the output, and the depth uncertainty of the unit pixel offset is calculated to eliminate the estimation error. In the similarity search along the epipolar line, the normalized cross-correlation and gradient are used as joint metrics. Finally, the effectiveness of the algorithm is verified through experiments, and it can get a better trade-off between performance and time.
源文献作者IEEE Control Systems Society (CSS) ; Northeastern University ; State Key Laboratory of Synthetical Automation for Process Industries ; Technical Committee on Control Theory, Chinese Association of Automation
产权排序2
会议录Proceedings of the 32nd Chinese Control and Decision Conference, CCDC 2020
会议录出版者IEEE
会议录出版地New York
语种英语
ISBN号978-1-7281-5854-9
WOS记录号WOS:000621616905010
源URL[http://ir.sia.cn/handle/173321/27693]  
专题沈阳自动化研究所_其他
通讯作者Xu, Chenglong
作者单位1.Shenyang SIASUN Robot & Automation Co., LTD., Shenyang 110168, China
2.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
3.Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110169, China
推荐引用方式
GB/T 7714
Xu, Chenglong,Wu CD,Qu DK,et al. Monocular adaptive inverse depth filtering algorithm based on Gaussian model[C]. 见:. Hefei, China. August 22-24, 2020.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。