Metabolomic Study of High-Fat Diet-Induced Obese (DIO) and DIO Plus CCl4-Induced NASH Mice and the Effect of Obeticholic Acid
文献类型:期刊论文
作者 | Zhu, Nanlin1; Huang, Suling2![]() ![]() ![]() ![]() ![]() |
刊名 | METABOLITES
![]() |
出版日期 | 2021-06-10 |
卷号 | 11期号:6页码:374 |
关键词 | nonalcoholic fatty liver disease (NAFLD) nonalcoholic fatty liver (NAFL) nonalcoholic steatohepatitis (NASH) differential metabolites metabolic pathways obeticholic acid (OCA) |
DOI | 10.3390/metabo11060374 |
文献子类 | Article |
英文摘要 | The pathophysiology of nonalcoholic fatty liver disease (NAFLD) is a complex process involving metabolic and inflammatory changes in livers and other organs, but the pathogenesis is still not well clarified. Two mouse models were established to study metabolic alteration of nonalcoholic fatty liver and nonalcoholic steatohepatitis, respectively. The concentrations of metabolites in serum, liver and intestine content were measured by the AbsoluteIDQ(R) p180 Kit (Biocrates Life Sciences, Innsbruck, Austria). Multivariate statistical methods, pathway analysis, enrichment analysis and correlation analysis were performed to analyze metabolomic data. The metabolic characteristics of liver, serum and intestine content could be distinctly distinguished from each group, indicating the occurrence of metabolic disturbance. Among them, metabolic alteration of liver and intestine content was more significant. Based on the metabolic data of liver, 19 differential metabolites were discovered between DIO and control, 12 between DIO-CCl4 and DIO, and 47 between DIO-CCl4 and normal. These metabolites were mainly associated with aminoacyl-tRNA biosynthesis, nitrogen metabolism, lipid metabolism, glyoxylate and dicarboxylate metabolism, and amino metabolism. Further study revealed that the intervention of obeticholic acid (OCA) could partly reverse the damage of CCl4. The correlation analysis of metabolite levels and clinical parameters showed that phosphatidylcholines were negatively associated with serum alanine aminotransferase, aspartate aminotransferase, NAFLD activity score, and fibrosis score, while lysophosphatidylcholines, sphingomyelins, amino acids, and acylcarnitines shared the reverse pattern. Our study investigated metabolic alteration among control, NAFLD model, and OCA treatment groups, providing preclinical information to understand the mechanism of NAFLD and amelioration of OCA. |
WOS关键词 | NONALCOHOLIC STEATOHEPATITIS ; HEPATIC STEATOSIS ; RECEPTOR AGONIST ; NUCLEAR RECEPTOR ; LIVER-DISEASE ; PHOSPHATIDYLCHOLINE ; IDENTIFICATION ; MULTICENTER ; PROFILES ; INJURY |
WOS研究方向 | Biochemistry & Molecular Biology |
语种 | 英语 |
WOS记录号 | WOS:000666103200001 |
出版者 | MDPI |
源URL | [http://119.78.100.183/handle/2S10ELR8/309385] ![]() |
专题 | 新药研究国家重点实验室 |
通讯作者 | Leng, Ying; Liu, Jia |
作者单位 | 1.Chinese Acad Sci, Shanghai Inst Mat Med, Shanghai 201203, Peoples R China; 2.Chinese Acad Sci, Shanghai Inst Mat Med, State Key Lab Drug Res, Shanghai 201203, Peoples R China; 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Zhu, Nanlin,Huang, Suling,Zhang, Qingli,et al. Metabolomic Study of High-Fat Diet-Induced Obese (DIO) and DIO Plus CCl4-Induced NASH Mice and the Effect of Obeticholic Acid[J]. METABOLITES,2021,11(6):374. |
APA | Zhu, Nanlin.,Huang, Suling.,Zhang, Qingli.,Zhao, Zhuohui.,Qu, Hui.,...&Liu, Jia.(2021).Metabolomic Study of High-Fat Diet-Induced Obese (DIO) and DIO Plus CCl4-Induced NASH Mice and the Effect of Obeticholic Acid.METABOLITES,11(6),374. |
MLA | Zhu, Nanlin,et al."Metabolomic Study of High-Fat Diet-Induced Obese (DIO) and DIO Plus CCl4-Induced NASH Mice and the Effect of Obeticholic Acid".METABOLITES 11.6(2021):374. |
入库方式: OAI收割
来源:上海药物研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。