IRAv3+: Hierarchical Incremental Rotation Averaging via Multiple Connected Dominating Sets
文献类型:期刊论文
作者 | Gao, Xiang3,4,5![]() ![]() ![]() |
刊名 | IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
![]() |
出版日期 | 2024-04-01 |
卷号 | 34期号:4页码:3049-3055 |
关键词 | Global structure from motion large-scale rotation averaging multiple connected dominating sets |
ISSN号 | 1051-8215 |
DOI | 10.1109/TCSVT.2023.3309661 |
通讯作者 | Shen, Shuhan(shshen@nlpr.ia.ac.cn) |
英文摘要 | Focusing on the difficulty of absolute rotation globalization of large-scale rotation averaging problem, a novel hierarchical pipeline, termed as IRAv3+, based on multiple Connected Dominating Sets (CDSs) is proposed in this paper. Specifically, the proposed method not only obtains the graph clusters for local rotation averaging like other cluster-based methods, but also generate a subset via connected dominating set extraction, which is served as a reference for rotation globalization. To facilitate the rotation globalization, two key techniques are proposed: 1) to provide a more reliable global reference, instead of a single CDS, multiple CDSs are randomly selected and united; 2) to give a more accurate local-to-global alignment estimation, instead of using the relative rotation measurements of the sharing edges between local clusters and global reference, the absolute rotations of common vertices between them are involved. Experiments on the 1DSfM dataset demonstrate the effectiveness of the proposed IRAv3+ and its advantages over the existing cluster-based rotation averaging methods and other state of the arts. |
WOS关键词 | ALGORITHMS ; EFFICIENT |
资助项目 | Strategic Priority Research Program of the Chinese Academy of Sciences |
WOS研究方向 | Engineering |
语种 | 英语 |
WOS记录号 | WOS:001197960500025 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | Strategic Priority Research Program of the Chinese Academy of Sciences |
源URL | [http://ir.ia.ac.cn/handle/173211/57059] ![]() |
专题 | 精密感知与控制研究中心_精密感知与控制 |
通讯作者 | Shen, Shuhan |
作者单位 | 1.Ocean Univ China, Coll Engn, Qingdao 266100, Peoples R China 2.Kaili Univ, Coll Sci, Kaili 556000, Peoples R China 3.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China 4.Chinese Acad Sci CASIA, Inst Automat, Beijing 100190, Peoples R China 5.CASIA, SenseTime Res Grp, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Gao, Xiang,Cui, Hainan,Huang, Wantao,et al. IRAv3+: Hierarchical Incremental Rotation Averaging via Multiple Connected Dominating Sets[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2024,34(4):3049-3055. |
APA | Gao, Xiang,Cui, Hainan,Huang, Wantao,Li, Menghan,&Shen, Shuhan.(2024).IRAv3+: Hierarchical Incremental Rotation Averaging via Multiple Connected Dominating Sets.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,34(4),3049-3055. |
MLA | Gao, Xiang,et al."IRAv3+: Hierarchical Incremental Rotation Averaging via Multiple Connected Dominating Sets".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 34.4(2024):3049-3055. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。