Quadrupedal Locomotion in an Energy-efficient Way Based on Reinforcement Learning
文献类型:期刊论文
作者 | Hao, Tiantian1,2![]() ![]() ![]() |
刊名 | INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS
![]() |
出版日期 | 2024-04-08 |
页码 | 11 |
关键词 | Energy-efficient motion quadruped robot reinforcement learning virtual model control |
ISSN号 | 1598-6446 |
DOI | 10.1007/s12555-022-1218-x |
通讯作者 | Hao, Tiantian(haotiantian2020@ia.ac.cn) |
英文摘要 | Achieving energy-efficient motion is important for the application of quadruped robots in a wide range. In this paper, we propose a hierarchical control framework that combines reinforcement learning and virtual model control to achieve energy-efficient motion with a planned gait. A reinforcement learning network is designed to learn the policy that maps the state of the robot to the action. The action is the increment of stance ratio, one of the gait parameters. The learned policy network is used as a high-level gait parameter modulator to adjust the gait parameters according to the body's velocity. The virtual model control method is used to compute the required force of robot's body. Then this force is decomposed to the feet of the stance legs with quadratic programming optimization. In the lowest level, the proportional-derivative controllers are used to control the joints' motion. Simulation and experiments are well conducted on the robot A1. The experimental results verify the effectiveness of the proposed method. |
WOS关键词 | ENERGETICS ; GAIT |
资助项目 | Science and Technology Program of Beijing Municipal Science and Technology Commission[Z211100004021021] |
WOS研究方向 | Automation & Control Systems |
语种 | 英语 |
WOS记录号 | WOS:001198556200003 |
出版者 | INST CONTROL ROBOTICS & SYSTEMS, KOREAN INST ELECTRICAL ENGINEERS |
资助机构 | Science and Technology Program of Beijing Municipal Science and Technology Commission |
源URL | [http://ir.ia.ac.cn/handle/173211/58284] ![]() |
专题 | 精密感知与控制研究中心_精密感知与控制 |
通讯作者 | Hao, Tiantian |
作者单位 | 1.Chinese Acad Sci, Inst Automat, CAS Engn Lab Intelligent Ind Vis, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Hao, Tiantian,Xu, De,Yan, Shaohua. Quadrupedal Locomotion in an Energy-efficient Way Based on Reinforcement Learning[J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS,2024:11. |
APA | Hao, Tiantian,Xu, De,&Yan, Shaohua.(2024).Quadrupedal Locomotion in an Energy-efficient Way Based on Reinforcement Learning.INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS,11. |
MLA | Hao, Tiantian,et al."Quadrupedal Locomotion in an Energy-efficient Way Based on Reinforcement Learning".INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS (2024):11. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。