中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [13]
近代物理研究所 [2]
上海药物研究所 [1]
采集方式
OAI收割 [16]
内容类型
期刊论文 [11]
会议论文 [5]
发表日期
2023 [1]
2022 [3]
2021 [5]
2020 [2]
2019 [1]
2018 [3]
更多
学科主题
筛选
浏览/检索结果:
共16条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Pro-tuning: Unified Prompt Tuning for Vision Tasks
期刊论文
OAI收割
IEEE Transactions on Circuits and Systems for Video Technology, 2023, 卷号: 34, 期号: 6, 页码: 4653 - 4667
作者:
Xing Nie
;
Bolin Ni
;
Jianlong Chang
;
Gaofeng Meng
;
Chunlei Huo
  |  
收藏
  |  
浏览/下载:8/0
  |  
提交时间:2024/06/21
PanGu Drug Model: learn a molecule like a human
期刊论文
OAI收割
SCIENCE CHINA-LIFE SCIENCES, 2022, 页码: 4
作者:
Lin, Xinyuan
;
Xu, Chi
;
Xiong, Zhaoping
;
Zhang, Xinfeng
;
Ni, Ningxi
  |  
收藏
  |  
浏览/下载:34/0
  |  
提交时间:2023/04/10
Improving the oxidation resistance of SIMP steel to liquid Pb-Bi eutectic by shot peening treatments
期刊论文
OAI收割
APPLIED SURFACE SCIENCE, 2022, 卷号: 578, 页码: 13
作者:
Ma, Zhiwei
;
Shen, Tielong
;
Wang, Zhiguang
;
Zhou, Ting
;
Chang, Hailong
  |  
收藏
  |  
浏览/下载:122/0
  |  
提交时间:2022/01/12
Steel
EPMA
Shot peening
Lead-bismuth eutectic
Corrosion
AME: Attention and Memory Enhancement in Hyper-Parameter Optimization
会议论文
OAI收割
New Orleans, USA, 2022.6.19-6.24
作者:
Xu, Nuo
;
Chang, Jianlong
;
Nie, Xing
;
Huo, Chunlei
;
Xiang, Shiming
  |  
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2022/12/20
Differentiable Convolution Search for Point Cloud Processing
会议论文
OAI收割
Montreal, Canada, 2021年10月10日至2021年10月17日
作者:
Xing Nie
;
Yongcheng Liu
;
Shaohong Chen
;
Jianlong Chang
;
Chunlei Huo
  |  
收藏
  |  
浏览/下载:8/0
  |  
提交时间:2024/06/24
DATA: Differentiable ArchiTecture Approximation With Distribution Guided Sampling
期刊论文
OAI收割
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 2021, 卷号: 43, 43, 期号: 9, 页码: 2905-2920, 2905-2920
作者:
Zhang, Xinbang
;
Chang, Jianlong
;
Guo, Yiwen
;
Meng, Gaofeng
;
Xiang, Shiming
  |  
收藏
  |  
浏览/下载:45/0
  |  
提交时间:2021/11/02
Computer architecture
Computer architecture
Search problems
Optimization
Task analysis
Bridges
Binary codes
Estimation
Neural architecture search(NAS)
ensemble gumbel-softmax
distribution guided sampling
Search problems
Optimization
Task analysis
Bridges
Binary codes
Estimation
Neural architecture search(NAS)
ensemble gumbel-softmax
distribution guided sampling
The role of He irradiation in the corrosion behaviour of T91 in high-temperature steam
期刊论文
OAI收割
CORROSION SCIENCE, 2021, 卷号: 189, 页码: 9
作者:
Liu, Chao
;
Shen, Tielong
;
Jin, Peng
;
Wang, Ji
;
Chang, Hailong
  |  
收藏
  |  
浏览/下载:96/0
  |  
提交时间:2021/12/09
A
Steel
B
Ion implantation
B
TEM
B
SEM
C
Oxidation
MS-Net: Multi-Source Spatio-Temporal Network for Traffic Flow Prediction
期刊论文
OAI收割
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 页码: 14
作者:
Fang, Shen
;
Prinet, Veronique
;
Chang, Jianlong
;
Werman, Michael
;
Zhang, Chunxia
  |  
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2022/01/27
Feature extraction
Convolution
Predictive models
Data models
Correlation
Roads
Kernel
Graph convolution
deep attention mechanism
traffic network
traffic flow prediction
artificial intelligence
deep learning
Decoupled Representation Learning for Character Glyph Synthesis
期刊论文
OAI收割
IEEE Transactions on Multimedia, 2021, 卷号: 2021, 期号: 2021, 页码: 1-13
作者:
Xiyan Liu
;
Gaofeng Meng
;
Jianlong Chang
;
Ruiguang Hu
;
Shiming Xiang
  |  
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2022/01/24
Character glyph synthesis
Decoupled representation
generative adversarial networks
Deep Self-Evolution Clustering
期刊论文
OAI收割
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 卷号: 42, 期号: 4, 页码: 809-823
作者:
Chang, Jianlong
;
Meng, Gaofeng
;
Wang, Lingfeng
;
Xiang, Shiming
;
Pan, Chunhong
  |  
收藏
  |  
浏览/下载:38/0
  |  
提交时间:2020/06/02
Task analysis
Unsupervised learning
Training
Clustering methods
Pattern analysis
Clustering
deep self-evolution clustering
self-evolution clustering training
deep unsupervised learning