中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共9条,第1-9条 帮助

条数/页: 排序方式:
A Robust Deep Affinity Network for Multiple Ship Tracking 期刊论文  OAI收割
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 卷号: 70, 页码: 20
作者:  
Zhang, Wen;  He, Xujie;  Li, Wanyi;  Zhang, Zhi;  Luo, Yongkang
  |  收藏  |  浏览/下载:30/0  |  提交时间:2021/11/02
The ParallelEye Dataset: A Large Collection of Virtual Images for Traffic Vision Research 期刊论文  OAI收割
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2019, 卷号: 20, 期号: 6, 页码: 2072-2084
作者:  
Li, Xuan;  Wang, Kunfeng;  Tian, Yonglin;  Yan, Lan;  Deng, Fang
  |  收藏  |  浏览/下载:61/0  |  提交时间:2019/07/11
Video Synopsis in Complex Situations 期刊论文  OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 卷号: 27, 期号: 8, 页码: 3798-3812
作者:  
Li, Xuelong;  Wang, Zhigang;  Lu, Xiaoqiang;  Lu, XQ (reprint author), Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr Opt Imagery Anal & Learning, Xian 710119, Shaanxi, Peoples R China.
  |  收藏  |  浏览/下载:43/0  |  提交时间:2018/05/14
Parallel vision for perception and understanding of complex scenes: methods, framework, and perspectives 期刊论文  OAI收割
ARTIFICIAL INTELLIGENCE REVIEW, 2017, 卷号: 48, 期号: 3, 页码: 299-329
作者:  
Wang, Kunfeng;  Gou, Chao;  Zheng, Nanning;  Rehg, James M.;  Wang, Fei-Yue
  |  收藏  |  浏览/下载:41/0  |  提交时间:2018/01/05
复杂场景中行为识别的关键技术及方法研究 学位论文  OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院大学, 2014
作者:  
周文
收藏  |  浏览/下载:99/0  |  提交时间:2015/09/02
Contrast-dependent OFF-dominance in cat primary visual cortex facilitates discrimination of stimuli with natural contrast statistics 期刊论文  OAI收割
EUROPEAN JOURNAL OF NEUROSCIENCE, 2014, 卷号: 39, 期号: 12, 页码: 2060-2070
Liu, KF; Yao, HS
收藏  |  浏览/下载:32/0  |  提交时间:2014/07/30
复杂场景多目标跟踪中的遮挡算法与应用研究 学位论文  OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2012
作者:  
丁欢
收藏  |  浏览/下载:115/0  |  提交时间:2015/09/02
Scene matching based on directional keylines and polar transform (EI CONFERENCE) 会议论文  OAI收割
2010 IEEE 10th International Conference on Signal Processing, ICSP2010, October 24, 2010 - October 28, 2010, Beijing, China
作者:  
Wang Y.;  Wang Y.;  Wang Y.;  Wang Y.;  Wang Y.
收藏  |  浏览/下载:24/0  |  提交时间:2013/03/25
Scene matching under complex background is a priority and difficulty in the field of computer vision  it has the characteristics of rotation and scaling invariance  commonly used in matching real-time collected images and photos for navigation. Scene matching techniques are faced with complex natural scenes  anti-light and anti-slight-distortion  the image distortion exist  applicable for complex scene matching. The project has a new idea: combining the keylines with the vectors description based on polar image translation  such as light  and utilize the rotation-scale-invariance vectors to describe the extracted keylines  change of gray levels  this method includes three steps: keylines extraction  perspective  description and matching. Preliminary experiments show that this keylines-based scene matching algorithm is applicable for image matching under complex background. 2010 IEEE.  scaling and other differences  which cause matching difficult. This paper aims to find a scene matching algorithm  
A segment detection method based on improved Hough transform (EI CONFERENCE) 会议论文  OAI收割
ICO20: Optical Information Processing, August 21, 2005 - August 26, 2005, Changchun, China
作者:  
Yao Z.-J.
收藏  |  浏览/下载:25/0  |  提交时间:2013/03/25
Hough transform is recognized as a powerful tool in shape analysis which gives good results even in the presence of noise and the disconnection of edge. However  3. applying the standard Hough transform equation to every point of the input image edge  4. according to the local threshold  6. merging the segments whose extreme points are near. Experiment results show the approach not only can recognize regular geometric object but also can extract the segment feature of real targets in complex environment. So the proposed method can be used in the target detection of complicated scenes  traditional Hough transform can only detect the lines  2. quantizing the parameter space  and extracting a group of maximums according to the global threshold  eliminating spurious peaks which are caused by the spreading effects  and will improve the precision of tracking.  cannot give the endpoints and length of the line segments and it is vulnerable to the quantization errors. Based on the analysis of its limitations  Hough transform has been improved in order to detect line segment feature of targets. The algorithm aims to avoid the loss of spatial information  as well as to eliminate the spurious peaks and fix on the line segments endpoints accurately  5. fixing on the endpoints of the segments according to the dynamic clustering rule  which can expediently be used for the description and classification of regular objects. The method consists of 6 steps: 1. setting up the image  parameter and line-segment spaces