中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [3]
计算技术研究所 [1]
长春光学精密机械与物... [1]
沈阳自动化研究所 [1]
采集方式
OAI收割 [6]
内容类型
期刊论文 [3]
学位论文 [2]
会议论文 [1]
发表日期
2019 [1]
2016 [1]
2014 [1]
2007 [1]
2006 [2]
学科主题
筛选
浏览/检索结果:
共6条,第1-6条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
A novel self-adapting filter based navigation algorithm for autonomous underwater vehicles
期刊论文
OAI收割
Ocean Engineering, 2019, 卷号: 187, 页码: 1-12
作者:
Xu CH(徐春晖)
;
Shao G(邵刚)
;
Wang Y(王轶群)
;
Liu J(刘健)
;
Qu DK(曲道奎)
  |  
收藏
  |  
浏览/下载:70/0
  |  
提交时间:2019/08/04
Autonomous underwater vehicle
Ultra short baseline
Condition-adaptive
Confidence measure operator
Integrated navigation system
Saliency Detection for Stereoscopic Images Based on Depth Confidence Analysis and Multiple Cues Fusion
期刊论文
OAI收割
IEEE SIGNAL PROCESSING LETTERS, 2016, 卷号: 23, 期号: 6, 页码: 5
作者:
Cong, Runmin
;
Lei, Jianjun
;
Zhang, Changqing
;
Huang, Qingming
;
Cao, Xiaochun
  |  
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2019/12/12
Color and depth-based compactness
depth confidence measure
multiple cues
saliency detection
Character confidence based on N-best list for keyword spotting in online Chinese handwritten documents
期刊论文
OAI收割
PATTERN RECOGNITION, 2014, 卷号: 47, 期号: 5, 页码: 1880-1890
作者:
Zhang, Heng
;
Wang, Da-Han
;
Liu, Cheng-Lin
收藏
  |  
浏览/下载:60/0
  |  
提交时间:2015/08/12
Online Chinese handwritten documents
Keyword spotting
Posterior probability
N-best list
Confidence measure
Confusion network
多语言语种识别技术的研究
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2007
作者:
姜洪臣
收藏
  |  
浏览/下载:151/0
  |  
提交时间:2015/09/02
多语言语种识别
音频分类
支持向量机
高斯混合模型-全局背景模型
识别置信度
multilingual language identification
audio classification
SVM
GMM-UBM
recognition confidence measure
语音识别中的置信度研究与应用
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2006
作者:
梁家恩
收藏
  |  
浏览/下载:108/0
  |  
提交时间:2015/09/02
语音识别
关键词检测
置信度
在线垃圾模型
MCE训练
ASR
KWS
Confidence Measure
Online Garbage
MCE Training
Study on color model conversion for camera with neural network based on the combination between second general revolving combination design and genetic algorithm (EI CONFERENCE)
会议论文
OAI收割
ICO20: Illumination, Radiation, and Color Technologies, August 21, 2005 - August 26, 2005, Changchun, China
作者:
Li Z.
;
Zhou F.
;
Wang C.
;
Li Z.
收藏
  |  
浏览/下载:36/0
  |  
提交时间:2013/03/25
Munsell color system is selected to establish the mutual conversion between RGB and L*a*b* color model for camera. The color luminance meter and CCD camera synchronously measure the same color card
XYZ value is gotten from the color luminance meter
the training error is 0.000748566
it can show that the method combining second general revolving combination design with genetic algorithm can optimize the hidden-layer structure of neural network. Using the data of testing set to test this network and calculating the color difference between forecast value and true value
the color picture captured from CCD camera is expressed for RGB value as the input of neural network
and the L*a*b* value converted from XYZ value is regarded as the real color value of target card
which the difference is not obvious comparing with forecast result
the maximum is 5.6357 NBS
namely the output of neural network. The neural network of two hidden-layers is considered
the minimum is 0.5311 NBS
so the second general revolving combination design is introduced into optimizing the structure of neural network
and the average of color difference is 3.1744 NBS.
which can carry optimization through unifying project design
data processing and the precision of regression equation. Their mathematics model of encoding space is gained
and the significance inspection shows the confidence degree of regression equation is 99%. The mathematics model is optimized by genetic algorithm
optimization solution is gotten
and function value of the goal is 0.0007168. The neural network of the optimization solution is trained