中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [4]
计算技术研究所 [2]
长春光学精密机械与物... [1]
沈阳自动化研究所 [1]
合肥物质科学研究院 [1]
采集方式
OAI收割 [9]
内容类型
期刊论文 [7]
会议论文 [2]
发表日期
2021 [1]
2020 [2]
2019 [1]
2018 [1]
2016 [1]
2015 [1]
更多
学科主题
筛选
浏览/检索结果:
共9条,第1-9条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
作者升序
作者降序
FSD-SLAM: a fast semi-direct SLAM algorithm
期刊论文
OAI收割
COMPLEX & INTELLIGENT SYSTEMS, 2021, 页码: 12
作者:
Dong, Xiang
;
Cheng, Long
;
Peng, Hu
;
Li, Teng
  |  
收藏
  |  
浏览/下载:52/0
  |  
提交时间:2021/04/21
SLAM
Feature enhancement
Pose estimation
Incremental dynamic covariance scaling
Point cloud integration
Multi-Objective Matrix Normalization for Fine-Grained Visual Recognition
期刊论文
OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 卷号: 29, 页码: 4996-5009
作者:
Min, Shaobo
;
Yao, Hantao
;
Xie, Hongtao
;
Zha, Zheng-Jun
;
Zhang, Yongdong
  |  
收藏
  |  
浏览/下载:46/0
  |  
提交时间:2020/06/02
Visualization
Graphics processing units
Feature extraction
Convergence
Optimization
Covariance matrices
Training
Fine-grained visual recognition
bilinear pooling
matrix normalization
multi-objective optimization
Deep Heterogeneous Hashing for Face Video Retrieval
期刊论文
OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 卷号: 29, 页码: 1299-1312
作者:
Qiao, Shishi
;
Wang, Ruiping
;
Shan, Shiguang
;
Chen, Xilin
  |  
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2020/12/10
Face
Covariance matrices
Task analysis
Binary codes
Kernel
Manifolds
Feature extraction
Face video retrieval
deep heterogeneous hashing
Riemannian kernel mapping
structured matrix backpropagation
A Novel Sign Language Recognition Framework Using Hierarchical Grassmann Covariance Matrix
期刊论文
OAI收割
IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 卷号: 21, 期号: 11, 页码: 2806-2814
作者:
Wang, Hanjie
;
Chai, Xiujuan
;
Chen, Xilin
  |  
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2020/12/10
Covariance matrices
Hidden Markov models
Manifolds
Assistive technology
Feature extraction
Gesture recognition
Correlation
Sign language recognition
grassmann covariance matrix
grassmann manifold
belief propagation
sentence spotting
Cross-covariance regularized autoencoders for nonredundant sparse feature representation
期刊论文
OAI收割
NEUROCOMPUTING, 2018, 卷号: 316, 页码: 49-58
作者:
Chen, Jie
;
Wu, ZhongCheng
;
Zhang, Jun
;
Li, Fang
;
Li, WenJing
  |  
收藏
  |  
浏览/下载:52/0
  |  
提交时间:2019/12/11
Autoencoder
Cross-covariance
Deep learning
Feature representation
Receptive fields
Accurate and robust feature-based homography estimation using HALF-SIFT and feature localization error weighting
期刊论文
OAI收割
Journal of Visual Communication and Image Representation, 2016, 卷号: 40, 页码: 288-299
作者:
Zhao CY(赵春阳)
;
Zhao HC(赵怀慈)
收藏
  |  
浏览/下载:35/0
  |  
提交时间:2016/08/14
Homography estimation
Feature localization error
Covariance weighted MLESAC
Covariance weighted Levenberg-Marquardt
A new region descriptor for multi-modal medical image registration and region detection
会议论文
OAI收割
37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, 25-29 Aug. 2015
作者:
Wan, Xiaonan
;
Yu, Dongdong
;
Yang, Feng
;
Yang, Caiyun
;
Leng, Chengcai
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2016/04/19
Image registration, Feature extraction, Covariance matrices
Block covariance based l(1) tracker with a subtle template dictionary
期刊论文
OAI收割
PATTERN RECOGNITION, 2013, 卷号: 46, 期号: 7, 页码: 1750-1761
作者:
Zhang, Xiaoqin
;
Li, Wei
;
Hu, Weiming
;
Ling, Haibin
;
Maybank, Steve
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2015/08/12
Visual tracking
Sparse representation
Block division
Covariance feature
Template update
A matching algorithm on statistical properties of Harris corner (EI CONFERENCE)
会议论文
OAI收割
2011 International Conference on Information and Automation, ICIA 2011, June 6, 2011 - June 8, 2011, Shenzhen, China
作者:
He B.
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2013/03/25
The fundamental goal of target recognition and video tracking is to match target template with source image. Most matching methods are based on image intensity or multi-feature points. And the latter method is more popular for its high accuracy and small calculation. Image Registration Based on Feature Points focus on effective feature extraction of image points and paradigm. Harris corner in the image rotation
gray
noise and viewpoint change conditions
has an ideal match results
is more recent application of one feature point. This paper extract the Harris corner deviation and covariance firstly
experiments show that the two features exclusive
then applied them to image registration for the first time. A set of actual images have shown
this proposed method not only overcomes the complicated background
gray uneven distribution problems
but also pan and zoom the image has a good resistance. 2011 IEEE.