中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [2]
地理科学与资源研究所 [1]
长春光学精密机械与物... [1]
地球化学研究所 [1]
生态环境研究中心 [1]
采集方式
OAI收割 [6]
内容类型
期刊论文 [3]
学位论文 [2]
会议论文 [1]
发表日期
2022 [1]
2021 [1]
2011 [1]
2009 [1]
2008 [1]
2006 [1]
更多
学科主题
环境工程::水处理工... [1]
筛选
浏览/检索结果:
共6条,第1-6条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Glutathione assisting the waste tobacco leaf to synthesize versatile biomass-based carbon dots for simultaneous detection and efficient removal of mercury ions
期刊论文
OAI收割
Journal of Environmental Chemical Engineering, 2022, 卷号: 10, 期号: 6, 页码: 108718
作者:
Hui Yang
;
Xiankun Su
;
Li Cai
;
Zhenchun Sun
;
Yechun Lin
  |  
收藏
  |  
浏览/下载:15/0
  |  
提交时间:2023/03/29
Waste Tobacco Leaf
Red Fluorescence Biomass-based Cds
Hg2++
Detection And Removal
Large Stokes Shift Emission
A Noise Removal Algorithm Based on OPTICS for Photon-Counting LiDAR Data
期刊论文
OAI收割
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 卷号: 18, 期号: 8, 页码: 1471-1475
作者:
Zhu, Xiaoxiao
;
Nie, Sheng
;
Wang, Cheng
;
Xi, Xiaohuan
;
Wang, Jinsong
  |  
收藏
  |  
浏览/下载:92/0
  |  
提交时间:2021/08/19
Ice, Cloud, Land Elevation Satellite-2 (ICESat-2)
noise removal
ordering points to identify the clustering structure (OPTICS)
photon-counting Light Detection and Ranging (LiDAR) (PCL)
养猪场抗生素污染浓度水平调查及生物转化研究
学位论文
OAI收割
博士, 北京: 中国科学院研究生院, 2011
潘寻
收藏
  |  
浏览/下载:189/0
  |  
提交时间:2011/08/30
抗生素
畜禽养殖业
粪污
同步检测方法
资源化处置
生物处理工 艺
去除效率
Antibiotics
Stockbreeding industry
Manure and wastewater
Simultaneous detection methods
Resourceful disposition
Biological treatment processes
Removal efficiency
Toward Accurate and Fast Iris Segmentation for Iris Biometrics
期刊论文
OAI收割
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 卷号: 31, 期号: 9, 页码: 1670-1684
作者:
He, Zhaofeng
;
Tan, Tieniu
;
Sun, Zhenan
;
Qiu, Xianchao
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2015/08/12
Biometrics
iris segmentation
reflection removal
eyelid localization
eyelash and shadow detection
edge fitting
基于视频的交通数据采集关键技术及应用研究
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2008
作者:
王坤峰
收藏
  |  
浏览/下载:67/0
  |  
提交时间:2015/09/02
智能交通系统
摄像机标定
运动目标检测与阴影去除
虚拟线圈
嵌入式交通数据采集系统
ITS
Camera calibration
Moving object detection and shadow removal
Virtual loop
Embedded traffic data collection system
A new approach for the removal of mixed noise based on wavelet transform (EI CONFERENCE)
会议论文
OAI收割
ICO20: Remote Sensing and Infrared Devices and Systems, August 21, 2005 - August 26, 2005, Changchun, China
作者:
Li Y.
;
Li Y.
;
Li Y.
;
Li Y.
收藏
  |  
浏览/下载:38/0
  |  
提交时间:2013/03/25
This paper proposed a new approach for the removal of mixed noise. There are many different ways in image denoising. Donoho et al have proposed a method for image de-noising by thresholding
ambiguity is often resulted in determining the correspondence of a modulus maximum to a singularity. In the light
and indeed
we combine the merits of the two techniques to form a new approach for the removal of mixed noise. At first
the application of their method to image denoising has been extremely successful. But the method of Donoho is based on the assumption that the type of noise is only additive Gaussian noise
we used wavelet singularity detection (WSD) technique to analyze singularities of signal and noise. According to the characteristic that wavelet transform modulus maxima of impulse noise rapidly decreases as the scale increases in wavelet domain
which is not successful for impulse noise. Mallat has also presented a method for signal denoising by discriminating the noise and the signal singularities through an analysis of their wavelet transform modulus maxima (WTMM). Nevertheless
it can be accurately located with multiscale space by going through dyadic orthogonal wavelet transform and removed. Furthermore the Gaussian noise is also removed through a level-dependent thresholding algorithm
the tracing of WTMM is not just tedious procedure computationally
algorithm. The experimental results demonstrate that the proposed method can effectively detect impulse noise and remove almost all of the noise while preserve image details very well.