中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [3]
沈阳自动化研究所 [2]
力学研究所 [1]
长春光学精密机械与物... [1]
过程工程研究所 [1]
计算机网络信息中心 [1]
更多
采集方式
OAI收割 [9]
iSwitch采集 [1]
内容类型
期刊论文 [9]
会议论文 [1]
发表日期
2022 [2]
2021 [2]
2020 [2]
2019 [1]
2018 [1]
2011 [1]
更多
学科主题
筛选
浏览/检索结果:
共10条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
作者升序
作者降序
Research on Electric Breakdown Fault Diagnosis Model of Transformer Insulated Oil Based on Fluorescent Double-Color Ratio
期刊论文
OAI收割
SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 卷号: 42
作者:
Zhao Yue
;
Ma Feng-xiang
;
Wang An-jing
;
Li Da-cheng
;
Song Yu-mei
  |  
收藏
  |  
浏览/下载:35/0
  |  
提交时间:2022/12/23
Transformer insulated oil
Fluorescence spectra
Double-color ratio detection
Fault diagnosis model
Generalization on Unseen Domains via Model-Agnostic Learning for Intelligent Fault Diagnosis
期刊论文
OAI收割
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 卷号: 71, 页码: 11
作者:
Wang, Huanjie
;
Bai, Xiwei
;
Wang, Sihan
;
Tan, Jie
;
Liu, Chengbao
  |  
收藏
  |  
浏览/下载:41/0
  |  
提交时间:2022/06/06
Fault diagnosis
Data models
Task analysis
Representation learning
Adaptation models
Training data
Training
Convolutional neural network (CNN)
data-driven fault diagnosis
domain generalization (DG)
model-agnostic learning
rolling bearing
Model-free fault diagnosis for autonomous underwater vehicles using sequence Convolutional Neural Network
期刊论文
OAI收割
Ocean Engineering, 2021, 卷号: 232, 页码: 1-11
作者:
Ji DX(冀大雄)
;
Yao, Xin
;
Li S(李硕)
;
Tang YG(唐元贵)
;
Tian Y(田宇)
  |  
收藏
  |  
浏览/下载:66/0
  |  
提交时间:2021/06/01
Autonomous Underwater Vehicles (AUVs)
Convolutional Neural Network (CNN)
Fault diagnosis
Global feature
Model-free
Autonomous underwater vehicle fault diagnosis dataset
期刊论文
OAI收割
Data in Brief, 2021, 卷号: 39, 页码: 1-6
作者:
Ji DX(冀大雄)
;
Yao, Xin
;
Li S(李硕)
;
Tang YG(唐元贵)
;
Tian Y(田宇)
  |  
收藏
  |  
浏览/下载:133/0
  |  
提交时间:2021/10/30
Autonomous underwater vehicles (AUV)
Fault diagnosis
Fault type
Model-free
State data
Transfer learning for process fault diagnosis: Knowledge transfer from simulation to physical processes
期刊论文
OAI收割
COMPUTERS & CHEMICAL ENGINEERING, 2020, 卷号: 139, 页码: 10
作者:
Li, Weijun
;
Gu, Sai
;
Zhang, Xiangping
;
Chen, Tao
  |  
收藏
  |  
浏览/下载:38/0
  |  
提交时间:2020/09/22
Fault diagnosis
Transfer learning
Model-process mismatch
Deep learning
Computer simulation
Domain adaptation
Locally Linear Back-propagation Based Contribution for Nonlinear Process Fault Diagnosis
期刊论文
OAI收割
IEEE/CAA Journal of Automatica Sinica, 2020, 卷号: 7, 期号: 3, 页码: 764-775
作者:
Jinchuan Qian
;
Li Jiang
;
Zhihuan Song
  |  
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2021/03/11
Auto-encoder (AE)
deep learning
fault diagnosis
locally linear model
nonlinear process
reconstruction based contribution (RBC)
An Ensemble Convolutional Neural Networks for Bearing Fault Diagnosis Using Multi-Sensor Data
期刊论文
OAI收割
Sensors, 2019, 卷号: 19, 期号: 23, 页码: 5300
作者:
Yang Liu(刘洋)
;
Xunshi Yan
;
Zhang CA(张陈安)
;
Wen Liu (刘文)
;
Liu Y(刘洋)
  |  
收藏
  |  
浏览/下载:104/0
  |  
提交时间:2020/01/02
Rotating Machinery
Fault Diagnosis
Multi-sensor Fusion
Convolutional Neural Network
Ensemble Model
A hybrid feature model and deep learning based fault diagnosis for unmanned aerial vehicle sensors
期刊论文
OAI收割
Neurocomputing, 2018, 卷号: 319, 期号: 2018, 页码: 155-163
作者:
Guo, Dingfei
;
Zhong, Maiying
  |  
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2022/04/06
Model based fault diagnosis
Deep learning
Short-time fourier transform
Convolutional neural network
UAV sensors
A dfsm-based protocol conformance testing and diagnosing method
期刊论文
iSwitch采集
Informatica, 2011, 卷号: 22, 期号: 3, 页码: 447-469
作者:
Zhang, Xinchang
;
Yang, Meihong
;
Geng, Guanggang
;
Luo, Wanming
收藏
  |  
浏览/下载:39/0
  |  
提交时间:2019/05/09
Protocol conformance testing
Fault detection
Fault diagnosis
Dfsm model
Abrupt sensor fault diagnosis based on wavelet network (EI CONFERENCE)
会议论文
OAI收割
2006 IEEE International Conference on Information Acquisition, ICIA 2006, August 20, 2006 - August 23, 2006, Weihai, Shandong, China
作者:
Li W.
;
Li W.
;
Zhang H.
;
Zhang H.
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2013/03/25
The possible faults of a sensor may be classified as abrupt (sudden) faults and incipient (slowly developing) faults. This paper focuses on the abrupt faults of a sensor. Due to the limited number of scales
a single wavelet amplitude map has not enough scales to describe all details of the signal. The sampling grid in the scale direction is rather sparse
Some of the fault information will be leaked under such sparse grid. To make up for the deficiency of scalar orthogonal wavelet transform in the application of abrupt fault diagnosis
multiwavelet packets transform was introduced into the field of abrupt fault diagnosis. The distribution differences of the signal energy on decomposed multiwavelet scales of the signal before and after the fault occurring are extracted as the fault feature and used as the input of multi-dimensional wavelet network. A new model-free diagnostic method for isolating abrupt sensor faults is developed based on a proposed algorithm of multi-dimensional wavelet network constructing. The method has been proved to be quite effective in the detection of sensor abrupt fault. 2006 IEEE.