中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共10条,第1-10条 帮助

条数/页: 排序方式:
Research on Electric Breakdown Fault Diagnosis Model of Transformer Insulated Oil Based on Fluorescent Double-Color Ratio 期刊论文  OAI收割
SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 卷号: 42
作者:  
Zhao Yue;  Ma Feng-xiang;  Wang An-jing;  Li Da-cheng;  Song Yu-mei
  |  收藏  |  浏览/下载:35/0  |  提交时间:2022/12/23
Generalization on Unseen Domains via Model-Agnostic Learning for Intelligent Fault Diagnosis 期刊论文  OAI收割
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 卷号: 71, 页码: 11
作者:  
Wang, Huanjie;  Bai, Xiwei;  Wang, Sihan;  Tan, Jie;  Liu, Chengbao
  |  收藏  |  浏览/下载:41/0  |  提交时间:2022/06/06
Model-free fault diagnosis for autonomous underwater vehicles using sequence Convolutional Neural Network 期刊论文  OAI收割
Ocean Engineering, 2021, 卷号: 232, 页码: 1-11
作者:  
Ji DX(冀大雄);  Yao, Xin;  Li S(李硕);  Tang YG(唐元贵);  Tian Y(田宇)
  |  收藏  |  浏览/下载:66/0  |  提交时间:2021/06/01
Autonomous underwater vehicle fault diagnosis dataset 期刊论文  OAI收割
Data in Brief, 2021, 卷号: 39, 页码: 1-6
作者:  
Ji DX(冀大雄);  Yao, Xin;  Li S(李硕);  Tang YG(唐元贵);  Tian Y(田宇)
  |  收藏  |  浏览/下载:133/0  |  提交时间:2021/10/30
Transfer learning for process fault diagnosis: Knowledge transfer from simulation to physical processes 期刊论文  OAI收割
COMPUTERS & CHEMICAL ENGINEERING, 2020, 卷号: 139, 页码: 10
作者:  
Li, Weijun;  Gu, Sai;  Zhang, Xiangping;  Chen, Tao
  |  收藏  |  浏览/下载:38/0  |  提交时间:2020/09/22
Locally Linear Back-propagation Based Contribution for Nonlinear Process Fault Diagnosis 期刊论文  OAI收割
IEEE/CAA Journal of Automatica Sinica, 2020, 卷号: 7, 期号: 3, 页码: 764-775
作者:  
Jinchuan Qian;  Li Jiang;  Zhihuan Song
  |  收藏  |  浏览/下载:25/0  |  提交时间:2021/03/11
An Ensemble Convolutional Neural Networks for Bearing Fault Diagnosis Using Multi-Sensor Data 期刊论文  OAI收割
Sensors, 2019, 卷号: 19, 期号: 23, 页码: 5300
作者:  
Yang Liu(刘洋);  Xunshi Yan;  Zhang CA(张陈安);  Wen Liu (刘文);  Liu Y(刘洋)
  |  收藏  |  浏览/下载:104/0  |  提交时间:2020/01/02
A hybrid feature model and deep learning based fault diagnosis for unmanned aerial vehicle sensors 期刊论文  OAI收割
Neurocomputing, 2018, 卷号: 319, 期号: 2018, 页码: 155-163
作者:  
Guo, Dingfei;  Zhong, Maiying
  |  收藏  |  浏览/下载:27/0  |  提交时间:2022/04/06
A dfsm-based protocol conformance testing and diagnosing method 期刊论文  iSwitch采集
Informatica, 2011, 卷号: 22, 期号: 3, 页码: 447-469
作者:  
Zhang, Xinchang;  Yang, Meihong;  Geng, Guanggang;  Luo, Wanming
收藏  |  浏览/下载:39/0  |  提交时间:2019/05/09
Abrupt sensor fault diagnosis based on wavelet network (EI CONFERENCE) 会议论文  OAI收割
2006 IEEE International Conference on Information Acquisition, ICIA 2006, August 20, 2006 - August 23, 2006, Weihai, Shandong, China
作者:  
Li W.;  Li W.;  Zhang H.;  Zhang H.
收藏  |  浏览/下载:23/0  |  提交时间:2013/03/25
The possible faults of a sensor may be classified as abrupt (sudden) faults and incipient (slowly developing) faults. This paper focuses on the abrupt faults of a sensor. Due to the limited number of scales  a single wavelet amplitude map has not enough scales to describe all details of the signal. The sampling grid in the scale direction is rather sparse  Some of the fault information will be leaked under such sparse grid. To make up for the deficiency of scalar orthogonal wavelet transform in the application of abrupt fault diagnosis  multiwavelet packets transform was introduced into the field of abrupt fault diagnosis. The distribution differences of the signal energy on decomposed multiwavelet scales of the signal before and after the fault occurring are extracted as the fault feature and used as the input of multi-dimensional wavelet network. A new model-free diagnostic method for isolating abrupt sensor faults is developed based on a proposed algorithm of multi-dimensional wavelet network constructing. The method has been proved to be quite effective in the detection of sensor abrupt fault. 2006 IEEE.