中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共15条,第1-10条 帮助

条数/页: 排序方式:
Co-rotating and traveling vortex sheets for the 2D incompressible Euler equation 期刊论文  OAI收割
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 卷号: 228, 页码: 21
作者:  
Cao, Daomin;  Qin, Guolin;  Zou, Changjun
  |  收藏  |  浏览/下载:28/0  |  提交时间:2023/02/07
Skeleton-aware Implicit Function for Single-view Human Reconstruction 期刊论文  OAI收割
CAAI Transactions on Intelligence Technology, 2023, 页码: 379-389
作者:  
Pengpeng Liu;  Guixuan Zhang;  Shuwu Zhang;  Yuanhao Li;  Zhi Zeng
  |  收藏  |  浏览/下载:16/0  |  提交时间:2024/01/12
An Implicit Function-Based Adaptive Control Scheme for Noncanonical-Form Discrete-Time Neural-Network Systems 期刊论文  OAI收割
IEEE TRANSACTIONS ON CYBERNETICS, 2021, 卷号: 51, 期号: 12, 页码: 5728-5739
作者:  
Zhang, Yanjun;  Tao, Gang
  |  收藏  |  浏览/下载:41/0  |  提交时间:2022/04/02
Implicit function based adaptive control of non-canonical form discrete-time nonlinear systems 期刊论文  OAI收割
AUTOMATICA, 2021, 卷号: 129, 页码: 13
作者:  
Zhang, Yanjun;  Zhang, Ji-Feng
  |  收藏  |  浏览/下载:65/0  |  提交时间:2021/10/26
Beyond Smiles: Static Expressions in Maxillary Protrusion and Associated Positivity 期刊论文  OAI收割
FRONTIERS IN PSYCHOLOGY, 2021, 卷号: 12, 页码: 9
作者:  
Chen, Lijing;  Jiang, Jiuhui;  Li, Xingshan;  Ding, Jinfeng;  Paterson, Kevin B.
  |  收藏  |  浏览/下载:22/0  |  提交时间:2021/05/17
Partition-Based Solutions of Static Logical Networks With Applications 期刊论文  OAI收割
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 卷号: 29, 期号: 4, 页码: 1252-1262
作者:  
Qiao, Yupeng;  Qi, Hongsheng;  Cheng, Daizhan
  |  收藏  |  浏览/下载:20/0  |  提交时间:2018/07/30
Local solvability of the k-Hessian equations 期刊论文  OAI收割
SCIENCE CHINA-MATHEMATICS, 2016, 卷号: 59, 期号: 9, 页码: 1753-1768
作者:  
Tian GuJi;  Wang Qi;  Xu Chao-Jiang
收藏  |  浏览/下载:43/0  |  提交时间:2016/12/12
FORMULA OF GLOBAL SMOOTH SOLUTION FOR NON-HOMOGENEOUS M-D CONSERVATION LAW WITH UNBOUNDED INITIAL VALUE 期刊论文  OAI收割
ACTA MATHEMATICA SCIENTIA, 2015, 卷号: 35, 期号: 2, 页码: 508-526
作者:  
Gao, Gaowei;  Hu, Kai;  Yang, Xiaozhou
收藏  |  浏览/下载:32/0  |  提交时间:2015/06/23
Structure buckling load interval analysis of supercavitating projectile (EI CONFERENCE) 会议论文  OAI收割
2011 9th International Conference on Reliability, Maintainability and Safety: Safety First, Reliability Primary, ICRMS'2011, June 12, 2011 - June 15, 2011, Guiyang, China
作者:  
Zhou L.
收藏  |  浏览/下载:26/0  |  提交时间:2013/03/25
As a result of supercavitating projectiles with high underwater velocity  their structures undergo high longitudinal force. It is necessary to perform structure buckling load interval analysis because the uncertainty of structural own parameters should be considered. Critical buckling load of supercavitating projectiles is calculated by Galerkin method. The partial matrixes of critical buckling load implicit function to each uncertainty variable are deduced  and the interval of structure critical buckling load is calculated by interval analysis and convex model methods. Numerical results show that the nominal value  lower and upper bounds of critical buckling load increase with the increment of the ratio of base diameter to cavitator diameter. And the uncertainty degree of basic variables should be controlled as far as possible in the project for high reliability. 2011 IEEE.  
Structure buckling reliability analysis of supercavitating projectile (EI CONFERENCE) 会议论文  OAI收割
2nd Annual Conference on Electrical and Control Engineering, ICECE 2011, September 16, 2011 - September 18, 2011, Yichang, China
作者:  
Zhou L.
收藏  |  浏览/下载:13/0  |  提交时间:2013/03/25
Because the underwater velocity of supercavitating projectile is very high  its structure undergo high longitudinal force. It is necessary to perform structure buckling reliability analysis because the randomicity of structural own parameters and flow parameters should be considered. Critical buckling load of supercavitating projectile is calculated by Galerkin method. The partial matrixes of critical buckling load implicit function to each random variable are deduced  and structural buckling reliability index is calculated by limit step length iteration method. Numerical results show that the critical buckling load and structural buckling reliability index increase with the increase of the ratio of base diameter to cavitator diameter. And structural buckling reliability index increase with the decrease of velocity coefficient. 2011 IEEE.