中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
计算技术研究所 [2]
自动化研究所 [2]
地理科学与资源研究所 [1]
长春光学精密机械与物... [1]
宁波材料技术与工程研... [1]
合肥物质科学研究院 [1]
更多
采集方式
OAI收割 [8]
内容类型
期刊论文 [6]
会议论文 [1]
学位论文 [1]
发表日期
2024 [2]
2020 [1]
2018 [1]
2016 [1]
2015 [1]
2006 [2]
更多
学科主题
筛选
浏览/检索结果:
共8条,第1-8条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
PV Identifier: Extraction of small-scale distributed photovoltaics in complex environments from high spatial resolution remote sensing images
期刊论文
OAI收割
APPLIED ENERGY, 2024, 卷号: 365, 页码: 123311
作者:
Lu, Ning
;
Li, Liang
;
Qin, Jun
  |  
收藏
  |  
浏览/下载:13/0
  |  
提交时间:2024/07/12
Distributed PV segmentation
PV identifier
Fine-grained feature layer
Semantic constraint module
High spatial resolution remote sensing images
LA-Net: layer attention network for 3D-to-2D retinal vessel segmentation in OCTA images
期刊论文
OAI收割
PHYSICS IN MEDICINE AND BIOLOGY, 2024, 卷号: 69, 期号: 4, 页码: 15
作者:
Yang, Chaozhi
;
Li, Bei
;
Xiao, Qian
;
Bai, Yun
;
Li, Yachuan
  |  
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2024/05/20
retinal vessel segmentation
3D-to-2D
multi-scale layer attention
reverse boundary attention
OCTA volume
Automatic Segmentation and Visualization of Choroid in OCT with Knowledge Infused Deep Learning
期刊论文
OAI收割
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 卷号: 24, 期号: 12, 页码: 3408-3420
作者:
Zhang, Huihong
;
Yang, Jianlong
;
Zhou, Kang
;
Li, Fei
;
Hu, Yan
  |  
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2021/12/01
OPTICAL COHERENCE TOMOGRAPHY
DIABETIC-RETINOPATHY
LAYER SEGMENTATION
LAMINA-CRIBROSA
THICKNESS
IMAGES
VOLUME
ENHANCEMENT
VASCULARITY
REMOVAL
Collaborative Deconvolutional Neural Networks for Joint Depth Estimation and Semantic Segmentation
期刊论文
OAI收割
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 卷号: 29, 期号: 11, 页码: 5655-5666
作者:
Liu, Jing
;
Wang, Yuhang
;
Li, Yong
;
Fu, Jun
;
Li, Jiangyun
  |  
收藏
  |  
浏览/下载:65/0
  |  
提交时间:2019/12/16
Deconvolutional neural network (DCNN)
depth estimation
fully connected conditional random field (CRF)
pointwise bilinear layer
semantic segmentation
soft mapping strategy
Reliable Fusion of Stereo Matching and Depth Sensor for High Quality Dense Depth Maps
期刊论文
OAI收割
SENSORS, 2015, 卷号: 15, 期号: 8, 页码: 20894-20924
作者:
Liu, Jing
;
Li, Chunpeng
;
Fan, Xuefeng
;
Wang, Zhaoqi
  |  
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2019/12/13
stereo matching
depth sensor
multiscale pseudo-two-layer model
segmentation
texture constraint
fusion move
视频图像运动目标分割研究
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2006
作者:
王嘉
收藏
  |  
浏览/下载:39/0
  |  
提交时间:2015/09/02
视频分析
运动目标分割
全局运动
运动分层
立体视觉
立体全局运动模型
智能交通
Video analysis
Moving object segmentation
Global motion
Motion layer
Sterevision
Stereo global motion model
Intelligent traffic system
Research on tracking approach to low-flying weak small target near the sea (EI CONFERENCE)
会议论文
OAI收割
ICO20: Optical Information Processing, August 21, 2005 - August 26, 2005, Changchun, China
作者:
Xue X.-C.
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2013/03/25
Automatic target detection is very difficult in complicate background of sea and sky because of the clutter caused by waves and clouds nearby the sea-level line. In this paper
in view of the low-flying target near the sea is always above the sea-level line
we can first locate the sea-level line
and neglect the image data beneath the sea-level line. Thus the noise under the sea-level line can be suppressed
and the executive time of target segmentation is also much reduced. A new method is proposed
which first uses neighborhood averaging method to suppress background and enhance targets so as to increase SNR
and then uses the multi-point multi-layer vertical Sobel operator combined with linear least squares fitting to locate the sea-level line
lastly uses the centroid tracking algorithm to detect and track the target. In the experiment
high frame rate and high-resolution digital CCD camera and high performance DSP are applied. Experimental results show that this method can efficiently locate the sea-level line on various conditions of lower contrast
and eliminate the negative impact of the clutter caused by waves and clouds
and capture and track target real-timely and accurately.