中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
计算技术研究所 [3]
长春光学精密机械与物... [2]
自动化研究所 [2]
沈阳自动化研究所 [1]
西安光学精密机械研究... [1]
采集方式
OAI收割 [9]
内容类型
期刊论文 [6]
会议论文 [3]
发表日期
2020 [1]
2019 [1]
2018 [2]
2016 [1]
2014 [1]
2010 [1]
更多
学科主题
筛选
浏览/检索结果:
共9条,第1-9条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Image Representations With Spatial Object-to-Object Relations for RGB-D Scene Recognition
期刊论文
OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 卷号: 29, 页码: 525-537
作者:
Song, Xinhang
;
Jiang, Shuqiang
;
Wang, Bohan
;
Chen, Chengpeng
;
Chen, Gongwei
  |  
收藏
  |  
浏览/下载:42/0
  |  
提交时间:2020/12/10
Feature extraction
Object detection
Image recognition
Layout
Data models
Recurrent neural networks
Scene recognition
object-to-object relation
sequential representations
RGB-D
object detection
Feature Aggregation With Reinforcement Learning for Video-Based Person Re-Identification
期刊论文
OAI收割
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 卷号: 30, 期号: 12, 页码: 3847-3852
作者:
Zhang, Wei
;
He, Xuanyu
;
Lu, Weizhi
;
Qiao, Hong
;
Li, Yibin
  |  
收藏
  |  
浏览/下载:51/0
  |  
提交时间:2020/03/30
Feature extraction
Task analysis
Cameras
Noise measurement
Learning systems
Reinforcement learning
Feature aggregation
reinforcement learning (RL)
sequential decision making
video-based person re-identification (re-id)
Learning sequential features for cascade outbreak prediction
期刊论文
OAI收割
KNOWLEDGE AND INFORMATION SYSTEMS, 2018, 卷号: 57, 期号: 3, 页码: 721-739
作者:
Gou, Chengcheng
;
Shen, Huawei
;
Du, Pan
;
Wu, Dayong
;
Liu, Yue
  |  
收藏
  |  
浏览/下载:61/0
  |  
提交时间:2019/12/10
Social network
Outbreak prediction
Sequential feature
LSTM
Popularity prediction
Action recognition using spatial-optical data organization and sequential learning framework
期刊论文
OAI收割
NEUROCOMPUTING, 2018, 卷号: 315, 页码: 221-233
作者:
Yuan, Yuan
;
Zhao, Yang
;
Wang, Qi
  |  
收藏
  |  
浏览/下载:38/0
  |  
提交时间:2018/10/31
Action Recognition
Spatiotemporal Feature
Deep Learning
Sequential Learning Framework
Feature Adaptive Online Sequential Extreme Learning Machine for lifelong indoor localization
期刊论文
OAI收割
NEURAL COMPUTING & APPLICATIONS, 2016, 卷号: 27, 期号: 1, 页码: 215-225
作者:
Jiang, Xinlong
;
Liu, Junfa
;
Chen, Yiqiang
;
Liu, Dingjun
;
Gu, Yang
  |  
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2019/12/13
Feature adaptive
Online Sequential Extreme Learning Machine (OS-ELM)
Lifelong
Indoor localization
Beyond semantic attributes: Auxiliary feature discovery for image classification
期刊论文
OAI收割
NEUROCOMPUTING, 2014, 卷号: 142, 页码: 155-164
作者:
Niu, Biao
;
Cheng, Jian
;
Liu, Yang
;
Lu, Hanging
;
Lu, Hanqing
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2015/08/12
Augmented feature
Sequential feature learning
Attribute
Study particle filter tracking and detection algorithms based on DSP signal processors (EI CONFERENCE)
会议论文
OAI收割
2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, CMCE 2010, August 24, 2010 - August 26, 2010, Changchun, China
Dong Y.
;
Chuan W.
收藏
  |  
浏览/下载:19/0
  |  
提交时间:2013/03/25
In Video tracking
detection and tracking usually need two algorithms. The process is complex and need much time which detection and tracking are. In this paper a hybrid valued sequential state vector is formulated. The state vector is characterized by information of target appearance flag and of location. Particle filter-based method implements detection and tracking at one time. In order to reduce process time and think of pixel position in tracking field
feature histogram of luminance is as observe vector and used posterior estimate. In this paper
the luminance component is derived and target is recognized and tracked through image processor based on DSP in order to implementing real-time. The experimental results confirm that method can detect and track the object in real-time successfully when the number of particles is 160. The method is robust for rolling
scale and partial occlusion. 2010 IEEE.
Study on color image tracking and detection algorithms based on particle filter (EI CONFERENCE)
会议论文
OAI收割
International Symposium on Photoelectronic Detection and Imaging 2009: Advances in Infrared Imaging and Applications, June 17, 2009 - June 19, 2009, Beijing, China
Wu C.
;
Sun H.-J.
;
Yang D.
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2013/03/25
In Video tracking
detection and tracking need two algorithms. The process is complex and need much time which detection and tracking is. In this paper a hybrid valued sequential state vector is formulated. The state vector is characterized by information of target appearance and of location. Particle filter-based method implements detection and tracking. In order to reduce process time and think of pixel position in tracking field
feature histogram of color-based is as observe vector and used posterior estimate. The experimental results confirm that method can detect and track object in 17.68ms successfully when the number of particles is 160. The method is robust for rolling
scale and partial occlusion. 2009 SPIE.
Tracking Deformable Object via Particle Filtering on Manifolds
会议论文
OAI收割
Chinese Conference one Pattern Recognition, Beijing, China, December 22-24, 2008
作者:
Liu YP(刘云鹏)
;
Li GW(李广伟)
;
Shi ZL(史泽林)
收藏
  |  
浏览/下载:19/0
  |  
提交时间:2012/06/06
target tracking
Sequential Monte Carlo
Manifolds
Lie Group
Gabor feature