中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [2]
软件研究所 [2]
长春光学精密机械与物... [1]
采集方式
OAI收割 [5]
内容类型
会议论文 [2]
期刊论文 [2]
学位论文 [1]
发表日期
2023 [1]
2014 [1]
2009 [1]
2006 [2]
学科主题
筛选
浏览/检索结果:
共5条,第1-5条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
作者升序
作者降序
Online Competition of Trajectory Planning for Automated Parking: Benchmarks, Achievements, Learned Lessons, and Future Perspectives
期刊论文
OAI收割
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 卷号: 8, 期号: 1, 页码: 16-21
作者:
Li, Bai
;
Fan, Lili
;
Ouyang, Yakun
;
Tang, Shiqi
;
Wang, Xiao
  |  
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2023/11/17
Trajectory
Trajectory planning
Benchmark testing
Planning
Source coding
Location awareness
Automobiles
Automated parking
trajectory planning
motion planning
autonomous driving
autonomous racing
一种基于单条程序执行路径的错误定位方法
期刊论文
OAI收割
计算机系统应用, 2014, 期号: 10, 页码: 112-118
周艺
;
易秋萍
;
刘剑
;
淮晓永
  |  
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2014/12/16
错误定位
最弱前置条件
可满足性理论
动态分析
自动化测试
fault localization
weakest pre-condition computation
satisfiability modulo theories
dynamic analysis
automated testing
automated test program generation for an industrial optimizing compiler
会议论文
OAI收割
4th International Workshop on Automation of Software Test (AST 2009) held at the 31st International Conference on Software Engineering, Vancouver, CANADA, MAY 18-19,
Zhao Chen
;
Xue Yunzhi
;
Tao Qiuming
;
Guo Liang
;
Wang Zhaohui
  |  
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2011/03/20
Chinese Academy of Sciences
Institute of Software
Matsushita Electric Industrial Co., Ltd
automated test program generation
industrial optimizing compiler
script-driven test program generation process
temporal-logic model
automatic programming
optimising compilers
program testing
temporal logic
天体光谱自动处理及其软件系统实现
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2006
作者:
杨金福
收藏
  |  
浏览/下载:59/0
  |  
提交时间:2015/09/02
天体光谱
自动分类
覆盖算法
SVM
PCA
NMF
系统设计
系统实现
软件测试
Celestial object spectrum
automated classification
covering algorithm
support vector machine
principal component analysis
non-negative matrix factorization
system design
system implementation
software testing
Intelligent MRTD testing for thermal imaging system using ANN (EI CONFERENCE)
会议论文
OAI收割
ICO20: Remote Sensing and Infrared Devices and Systems, August 21, 2005 - August 26, 2005, Changchun, China
Sun J.
;
Ma D.
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2013/03/25
The Minimum Resolvable Temperature Difference (MRTD) is the most widely accepted figure for describing the performance of a thermal imaging system. Many models have been proposed to predict it. The MRTD testing is a psychophysical task
for which biases are unavoidable. It requires laboratory conditions such as normal air condition and a constant temperature. It also needs expensive measuring equipments and takes a considerable period of time. Especially when measuring imagers of the same type
the test is time consuming. So an automated and intelligent measurement method should be discussed. This paper adopts the concept of automated MRTD testing using boundary contour system and fuzzy ARTMAP
but uses different methods. It describes an Automated MRTD Testing procedure basing on Back-Propagation Network. Firstly
we use frame grabber to capture the 4-bar target image data. Then according to image gray scale
we segment the image to get 4-bar place and extract feature vector representing the image characteristic and human detection ability. These feature sets
along with known target visibility
are used to train the ANN (Artificial Neural Networks). Actually it is a nonlinear classification (of input dimensions) of the image series using ANN. Our task is to justify if image is resolvable or uncertainty. Then the trained ANN will emulate observer performance in determining MRTD. This method can reduce the uncertainties between observers and long time dependent factors by standardization. This paper will introduce the feature extraction algorithm
demonstrate the feasibility of the whole process and give the accuracy of MRTD measurement.