中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [1]
自动化研究所 [1]
采集方式
OAI收割 [2]
内容类型
会议论文 [1]
期刊论文 [1]
发表日期
2024 [1]
2008 [1]
学科主题
筛选
浏览/检索结果:
共2条,第1-2条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
作者升序
作者降序
ImFusion: Boosting Two-Stage 3D Object Detection via Image Candidates
期刊论文
OAI收割
IEEE SIGNAL PROCESSING LETTERS, 2024, 卷号: 31, 页码: 241-245
作者:
Tao, Manli
;
Zhao, Chaoyang
;
Wang, Jinqiao
;
Tang, Ming
  |  
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2024/03/26
Three-dimensional displays
Proposals
Object detection
Feature extraction
Point cloud compression
Aggregates
Sun
3D object detection
image candidates
pseudo 3D proposal
target missing
Affine object recognition and affine parameters estimation based on covariant matrix (EI CONFERENCE)
会议论文
OAI收割
2008 International Symposium on Information Science and Engineering, ISISE 2008, December 20, 2008 - December 22, 2008, Shanghai, China
作者:
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
收藏
  |  
浏览/下载:149/0
  |  
提交时间:2013/03/25
A new method of affine object recognition and affine parameters estimation is presented. For a real-time image and a group of templates
in addition
firstly
on the basis of correct recognition
we segment the object regions in them and compute their covariant matrices. Secondly
it can estimate affine parameters exactly
normalize the ellipse regions defined by covariant matrices to circle regions to get rotational invariants
and the estimated error is within 3%. 2008 IEEE.
and compute the similarity function value between rotational invariants of real-time image and every template respectively. Then compare the values with threshold set in advance
if more than one value is larger than threshold
take the corresponding templates as candidates
and compute affine matrix between real-time image and every candidate. Finally
transform the realtime image with every affine matrix and match the result with corresponding candidate by classical matching methods. Experimental results show that the presented method is robust to illumination
with low computational complexity
and it can realize recognition of different affine objects