中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [7]
西安光学精密机械研究... [2]
长春光学精密机械与物... [1]
采集方式
OAI收割 [10]
内容类型
期刊论文 [8]
会议论文 [1]
学位论文 [1]
发表日期
2024 [1]
2022 [1]
2019 [1]
2017 [2]
2016 [1]
2015 [1]
更多
学科主题
筛选
浏览/检索结果:
共10条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
CGFormer: ViT-Based Network for Identifying Computer-Generated Images With Token Labeling
期刊论文
OAI收割
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 卷号: 19, 页码: 235-250
作者:
Quan, Weize
;
Deng, Pengfei
;
Wang, Kai
;
Yan, Dong-Ming
  |  
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2024/02/22
CG image forensics
transformer
token labeling
generalization
robustness
Fine-Grained Human-Centric Tracklet Segmentation with Single Frame Supervision
期刊论文
OAI收割
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 卷号: 44, 期号: 2, 页码: 610-621
作者:
Liu, Si
;
Ren, Guanghui
;
Sun, Yao
;
Wang, Jinqiao
;
Wang, Changhu
  |  
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2022/02/16
Labeling
Object segmentation
Image segmentation
Task analysis
Semantics
Training
Face
Video object segmentation
human-centric
fine-grained
optical flow estimation
Automatic brain labeling via multi-atlas guided fully convolutional networks
期刊论文
OAI收割
Medical Image Analysis, 2019, 期号: 52, 页码: 157-168
作者:
Longwei Fang
;
Lichi Zhang
;
Dong Nie
;
Xiaohuan Cao
;
Islem Rekik
  |  
收藏
  |  
浏览/下载:70/0
  |  
提交时间:2019/05/05
Brain Image Labeling, Multi-atlas-based Method, Fully Convolutional Network, Patch-based Labeling
Geographic, Geometrical and Semantic Reconstruction of Urban Scene from High Resolution Oblique Aerial Image
期刊论文
OAI收割
IEEE/CAA Journal of Automatica Sinica, 2017, 期号: x, 页码: x
作者:
Xiaofeng Sun
;
Shuhan Shen
;
Hainan Cui
;
Lihua Hu
;
Zhanyi Hu
  |  
收藏
  |  
浏览/下载:44/0
  |  
提交时间:2018/10/09
Oblique Aerial Image
Point Cloud
Urban Reconstruction
Semantic Labeling
Robust Sparse Coding for Mobile Image Labeling on the Cloud
期刊论文
OAI收割
ieee transactions on circuits and systems for video technology, 2017, 卷号: 27, 期号: 1, 页码: 62-72
作者:
Tao, Dapeng
;
Cheng, Jun
;
Gao, Xinbo
;
Li, Xuelong
;
Deng, Cheng
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2017/04/05
Cloud computing
correntropy
mobile image
labeling
sparse coding
DISC: Deep Image Saliency Computing via Progressive Representation Learning
期刊论文
OAI收割
ieee transactions on neural networks and learning systems, 2016, 卷号: 27, 期号: 6, 页码: 1135-1149
作者:
Chen, Tianshui
;
Lin, Liang
;
Liu, Lingbo
;
Luo, Xiaonan
;
Li, Xuelong
收藏
  |  
浏览/下载:44/0
  |  
提交时间:2016/09/19
Convolutional neural network (CNN)
image labeling
representation learning
saliency detection
Image automatic annotation via multi-view deep representation
期刊论文
OAI收割
Journal of Visual Communication and Image Representation, 2015, 卷号: 2015, 期号: 33, 页码: 368-377
作者:
Yang Y(杨阳)
;
Zhang Wensheng(张文生)
  |  
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2016/10/13
Image Annotation
Stacked Auto-encoder
Imbalance Learning
Multi-view Learning
Image Features
Semantic Gap
Deep Learning
Multi-labeling
基于局部上下文的图像内容理解研究
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院大学, 2014
作者:
吴子丰
收藏
  |  
浏览/下载:72/0
  |  
提交时间:2015/09/02
图像内容理解
上下文知识
图像分类
图像语义分割
步态识别
Image understanding
Context
Image classification
Image labeling
Gait recognition
Target characteristic extraction algorithm based on block structure variables (EI CONFERENCE)
会议论文
OAI收割
2010 3rd International Conference on Advanced Computer Theory and Engineering, ICACTE 2010, August 20, 2010 - August 22, 2010, Chengdu, China
作者:
Zhou Y.
;
Yang H.
;
Yan F.
;
Yan F.
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2013/03/25
In image processing system
the target recognition is very crucial. An optimized algorithm based on the definition of block is presented. In this algorithm
two structure variables are self-defined to calculate the areas and centroids of targets. The labeling conflicts are resolved by tracking and correcting
which means that if there is a conflict
trace the neighbored blocks and correct the labels of them. Finally
the characteristics of blocks
which have the same label
are accumulated. This method has outstanding advantages in saving memory
compared with Pixel labeling algorithm and Run-length code algorithm. The new algorithm is simple and the results of target characteristics are easy to be analyzed and handled in the following processes. 2010 IEEE.
A novel pixon-representation for image segmentation based on Markov random field
期刊论文
OAI收割
IMAGE AND VISION COMPUTING, 2008, 卷号: 26, 期号: 11, 页码: 1507-1514
作者:
Lin, Lei
;
Zhu, Litao
;
Yang, Faguo
;
Jiang, Tianzi
收藏
  |  
浏览/下载:11/0
  |  
提交时间:2015/11/08
image segmentation
pixon-representation
Markov random field
region labeling