中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [3]
长春光学精密机械与物... [2]
遥感与数字地球研究所 [1]
沈阳自动化研究所 [1]
合肥物质科学研究院 [1]
国家授时中心 [1]
更多
采集方式
OAI收割 [9]
内容类型
期刊论文 [7]
会议论文 [2]
发表日期
2024 [1]
2022 [1]
2020 [1]
2017 [1]
2016 [2]
2011 [1]
更多
学科主题
Environmen... [1]
筛选
浏览/检索结果:
共9条,第1-9条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
IGE-LIO: Intensity Gradient Enhanced Tightly Coupled LiDAR-Inertial Odometry
期刊论文
OAI收割
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 卷号: 73
作者:
Chen, Ziyu
;
Zhu, Hui
;
Yu, Biao
;
Jiang, Chunmao
;
Hua, Chen
  |  
收藏
  |  
浏览/下载:8/0
  |  
提交时间:2024/11/20
Laser radar
Feature extraction
Simultaneous localization and mapping
Noise
Accuracy
Location awareness
Data mining
Degenerated environments
intensity gradient
localization
simultaneous localization and mapping (SLAM)
weighting function
Intensity/Inertial Integration-Aided Feature Tracking on Event Cameras
期刊论文
OAI收割
REMOTE SENSING, 2022, 卷号: 14, 期号: 8, 页码: 15
作者:
Li, Zeyu
;
Liu, Yong
;
Zhou, Feng
;
Li, Xiaowan
  |  
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2022/08/15
event camera
feature tracking
intensity
inertial integration
Features Combined Binary Descriptor Based on Voted Ring-Sampling Pattern
期刊论文
OAI收割
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 卷号: 30, 期号: 10, 页码: 3675-3687
作者:
Liu, Hongmin
;
Zhang, Qianqian
;
Fan, Bin
;
Wang, Zhiheng
;
Han, Junwei
  |  
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2021/01/07
Histograms
Feature extraction
Encoding
Task analysis
Fans
Computational efficiency
Memory management
Binary descriptor
combined features
gradient feature
intensity feature
ring-sampling pattern
voting strategy
Physiological Signal-Based Method for Measurement of Pain Intensity
期刊论文
OAI收割
FRONTIERS IN NEUROSCIENCE, 2017, 卷号: 11, 页码: 1-13
作者:
Su, Yang
;
Han JD(韩建达)
;
Zhao XG(赵新刚)
;
Chu YQ(褚亚奇)
  |  
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2017/08/20
feature extraction
feature selection and reduction
pain intensity quantification
physiological signals
pattern classification
Exploring Local and Overall Ordinal Information for Robust Feature Description
期刊论文
OAI收割
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 卷号: 38, 期号: 11, 页码: 2198-2211
作者:
Zhenhua Wang
;
Bin Fan
;
Gang Wang
;
Fuchao Wu
  |  
收藏
  |  
浏览/下载:40/0
  |  
提交时间:2018/01/03
Feature Description
Intensity Order
Illumination Invariance
Image Matching
Improved bore-sight calibration for airborne light detection and ranging using planar patches
期刊论文
OAI收割
Journal of Applied Remote Sensing, 2016, 卷号: 10, 期号: 2
作者:
Li, Dong
;
Guo, Huadong
;
Wang, Cheng
;
Dong, Pinliang
;
Zuo, Zhengli
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2017/04/24
SPECIES CLASSIFICATION
FEATURE PARAMETERS
LIDAR INTENSITY
CANOPY
FOREST
TERRESTRIAL
A matching algorithm on statistical properties of Harris corner (EI CONFERENCE)
会议论文
OAI收割
2011 International Conference on Information and Automation, ICIA 2011, June 6, 2011 - June 8, 2011, Shenzhen, China
作者:
He B.
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2013/03/25
The fundamental goal of target recognition and video tracking is to match target template with source image. Most matching methods are based on image intensity or multi-feature points. And the latter method is more popular for its high accuracy and small calculation. Image Registration Based on Feature Points focus on effective feature extraction of image points and paradigm. Harris corner in the image rotation
gray
noise and viewpoint change conditions
has an ideal match results
is more recent application of one feature point. This paper extract the Harris corner deviation and covariance firstly
experiments show that the two features exclusive
then applied them to image registration for the first time. A set of actual images have shown
this proposed method not only overcomes the complicated background
gray uneven distribution problems
but also pan and zoom the image has a good resistance. 2011 IEEE.
A Partial Intensity Invariant Feature Descriptor for Multimodal Retinal Image Registration
期刊论文
OAI收割
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 卷号: 57, 期号: 7, 页码: 1707-1718
作者:
Chen, Jian
;
Tian, Jie
;
Lee, Noah
;
Zheng, Jian
;
Smith, R. Theodore
收藏
  |  
浏览/下载:19/0
  |  
提交时间:2015/11/08
Harris detector
local feature
multimodal registration
partial intensity invariance
retinal images
Integrated intensity, orientation code and spatial information for robust tracking (EI CONFERENCE)
会议论文
OAI收割
2007 2nd IEEE Conference on Industrial Electronics and Applications, ICIEA 2007, May 23, 2007 - May 25, 2007, Harbin, China
作者:
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2013/03/25
real-time tracking is an important topic in computer vision. Conventional single cue algorithms typically fail outside limited tracking conditions. Integration of multimodal visual cues with complementary failure modes allows tracking to continue despite losing individual cues. In this paper
we combine intensity
orientation codes and special information to form a new intensity-orientation codes-special (IOS) feature to represent the target. The intensity feature is not affected by the shape variance of object and has good stability. Orientation codes matching is robust for searching object in cluttered environments even in the cases of illumination fluctuations resulting from shadowing or highlighting
etc The spatial locations of the pixels are used which allow us to take into account the spatial information which is lost in traditional histogram. Histograms of intensity
orientation codes and spatial information are employed for represent the target Mean shift algorithm is a nonparametric density estimation method. The fast and optimal mode matching can be achieved by this method. In order to reduce the compute time
we use the mean shift procedure to reach the target localization. Experiment results show that the new method can successfully cope with clutter
partial occlusions
illumination change
and target variations such as scale and rotation. The computational complexity is very low. If the size of the target is 3628 pixels
it only needs 12ms to complete the method. 2007 IEEE.