中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
西安光学精密机械研究... [2]
长春光学精密机械与物... [1]
沈阳自动化研究所 [1]
采集方式
OAI收割 [4]
内容类型
期刊论文 [2]
专著 [1]
会议论文 [1]
发表日期
2022 [1]
2015 [1]
2013 [1]
2010 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
All Weather Robot Vision
专著
OAI收割
Berlin:Springer Nature Singapore Pte Ltd., 2022
作者:
Tian JD(田建东)
  |  
收藏
  |  
浏览/下载:87/0
  |  
提交时间:2022/01/13
Robot vision
Reflectance recovery
Shadow detection
Shadow removal
Highlight removal
Intrinsic images
Rain removal
Snowflake removal
Fog removal
Underwater scattering
Light field
Accurate Normal and Reflectance Recovery Using Energy Optimization
期刊论文
OAI收割
ieee transactions on circuits and systems for video technology, 2015, 卷号: 25, 期号: 2, 页码: 212-224
作者:
Luo, Tao
;
Shen, Jianbing
;
Li, Xuelong
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2015/07/14
Energy optimization
intrinsic images
normal recovery
reflectance
Intrinsic Image Decomposition Using Optimization and User Scribbles
期刊论文
OAI收割
ieee transactions on cybernetics, 2013, 卷号: 43, 期号: 2, 页码: 425-436
作者:
Shen, Jianbing
;
Yang, Xiaoshan
;
Li, Xuelong
;
Jia, Yunde
收藏
  |  
浏览/下载:48/0
  |  
提交时间:2015/06/08
Energy optimization
illumination
intrinsic images
reflectance
user scribbles
Directional multiscale edge detection using the contourlet transform (EI CONFERENCE)
会议论文
OAI收割
2010 IEEE International Conference on Advanced Computer Control, ICACC 2010, March 27, 2010 - March 29, 2010, 445 Hoes Lane - P.O.Box 1331, Piscataway, NJ 08855-1331, United States
作者:
Jin L.-X.
;
Han S.-L.
;
Zhang R.-F.
收藏
  |  
浏览/下载:34/0
  |  
提交时间:2013/03/25
Wavelet multiresolution analysis allows us to detect edges at different scales
also to obtain other important aspects of the extracted edges. However
due to the usual two-dimensional tensor product
wavelet transform is not optimal for representing images. The main problem in edge detection using wavelet transform is that it can only capture point-singularities
and the extracted edges are not continuous. In order to solve that problem
we propose a new image edge detection method based on the contourlet transform. The directional multiresolution representation Contourlet takes advantages of the intrinsic geometrical structure of images
and is appropriate for the analysis of the image edges. Using the modulus maxima detection
an image edge detection method based on contourlet transform is proposed. To suppress the image noise effect on edge detection
the scale multiplication in contourlet domain is also proposed. Through real images experiments
the proposed edge detection method's performance for the extracted edges is analyzed and compared with other two edge detection methods. The experiment result proves that the proposed edge detection method improves over wavelet-based techniques and Canny detector
and also works well for noisy images. 2010 IEEE.