中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [1]
自动化研究所 [1]
沈阳自动化研究所 [1]
采集方式
OAI收割 [3]
内容类型
会议论文 [2]
期刊论文 [1]
发表日期
2024 [1]
2013 [1]
2006 [1]
学科主题
筛选
浏览/检索结果:
共3条,第1-3条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Lightweight Structured Line Map Based Visual Localization
期刊论文
OAI收割
IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 卷号: 9, 期号: 6, 页码: 5182-5189
作者:
Liu, Hongmin
;
Cao, Chengyang
;
Ye, Hanqiao
;
Cui, Hainan
;
Gao, Wei
  |  
收藏
  |  
浏览/下载:32/0
  |  
提交时间:2024/05/30
Visual localization
line segments
lightweight structured line map
pose estimation
A line mapping based automatic registration algorithm of infrared and visible images
会议论文
OAI收割
5th International Symposium on Photoelectronic Detection and Imaging (ISPDI) - Infrared Imaging and Applications, Beijing, June 25-27, 2013
作者:
Ai R(艾锐)
;
Shi ZL(史泽林)
;
Xu DJ(徐德江)
;
Zhang CS(张程硕)
收藏
  |  
浏览/下载:36/0
  |  
提交时间:2013/12/26
There exist complex gray mapping relationships among infrared and visible images because of the different imaging mechanisms. The difficulty of infrared and visible image registration is to find a reasonable similarity definition. In this paper, we develop a novel image similarity called implicit linesegment similarity(ILS) and a registration algorithm of infrared and visible images based on ILS. Essentially, the algorithm achieves image registration by aligning the corresponding line segment features in two images. First, we extract line segment features and record their coordinate positions in one of the images, and map these line segments into the second image based on the geometric transformation model. Then we iteratively maximize the degree of similarity between the line segment features and correspondence regions in the second image to obtain the model parameters. The advantage of doing this is no need directly measuring the gray similarity between the two images. We adopt a multi-resolution analysis method to calculate the model parameters from coarse to fine on Gaussian scale space. The geometric transformation parameters are finally obtained by the improved Powell algorithm. Comparative experiments demonstrate that the proposed algorithm can effectively achieve the automatic registration for infrared and visible images, and under considerable accuracy it makes a more significant improvement on computational efficiency and anti-noise ability than previously proposed algorithms.
A segment detection method based on improved Hough transform (EI CONFERENCE)
会议论文
OAI收割
ICO20: Optical Information Processing, August 21, 2005 - August 26, 2005, Changchun, China
作者:
Yao Z.-J.
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2013/03/25
Hough transform is recognized as a powerful tool in shape analysis which gives good results even in the presence of noise and the disconnection of edge. However
3. applying the standard Hough transform equation to every point of the input image edge
4. according to the local threshold
6. merging the segments whose extreme points are near. Experiment results show the approach not only can recognize regular geometric object but also can extract the segment feature of real targets in complex environment. So the proposed method can be used in the target detection of complicated scenes
traditional Hough transform can only detect the lines
2. quantizing the parameter space
and extracting a group of maximums according to the global threshold
eliminating spurious peaks which are caused by the spreading effects
and will improve the precision of tracking.
cannot give the endpoints and length of the line segments and it is vulnerable to the quantization errors. Based on the analysis of its limitations
Hough transform has been improved in order to detect line segment feature of targets. The algorithm aims to avoid the loss of spatial information
as well as to eliminate the spurious peaks and fix on the line segments endpoints accurately
5. fixing on the endpoints of the segments according to the dynamic clustering rule
which can expediently be used for the description and classification of regular objects. The method consists of 6 steps: 1. setting up the image
parameter and line-segment spaces