中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [7]
长春光学精密机械与物... [2]
计算技术研究所 [1]
沈阳自动化研究所 [1]
采集方式
OAI收割 [11]
内容类型
期刊论文 [9]
会议论文 [2]
发表日期
2023 [1]
2022 [3]
2021 [3]
2020 [1]
2010 [1]
2009 [1]
更多
学科主题
筛选
浏览/检索结果:
共11条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Contour Primitive of Interest Extraction Network Based on Dual-Metric One-Shot Learning for Vision Measurement
期刊论文
OAI收割
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 卷号: 19, 期号: 4, 页码: 5839-5848
作者:
Qin, Fangbo
;
Lin, Shan
;
Xu, De
  |  
收藏
  |  
浏览/下载:14/0
  |  
提交时间:2023/11/17
Feature extraction
Measurement
Task analysis
Imaging
Image segmentation
Prototypes
Training
Contour extraction
deep learning
metric learning
one-shot learning
vision measurement
Adaptively Weighted k-Tuple Metric Network for Kinship Verification
期刊论文
OAI收割
IEEE TRANSACTIONS ON CYBERNETICS, 2022, 页码: 14
作者:
Huang, Sheng
;
Lin, Jingkai
;
Huangfu, Luwen
;
Xing, Yun
;
Hu, Junlin
  |  
收藏
  |  
浏览/下载:32/0
  |  
提交时间:2022/06/10
Measurement
Feature extraction
Task analysis
Faces
Deep learning
Convolutional neural networks
Genetics
Deep learning
kinship verification
metric learning
relation network (RN)
triplet loss
Evolving Metric Learning for Incremental and Decremental Features
期刊论文
OAI收割
IEEE Transactions on Circuits and Systems for Video Technology, 2022, 卷号: 32, 期号: 4, 页码: 2290-2302
作者:
Dong JH(董家华)
;
Cong Y(丛杨)
;
Sun G(孙干)
;
Zhang T(张涛)
;
Tang X(唐旭)
  |  
收藏
  |  
浏览/下载:73/0
  |  
提交时间:2021/08/28
Data models
Extraterrestrial measurements
Feature extraction
instance and feature evolutions
low-rank constraint
Measurement
Online metric learning
Optimization
Robot sensing systems
smoothed Wasserstein distance
Task analysis
Adversarial-Metric Learning for Audio-Visual Cross-Modal Matching
期刊论文
OAI收割
IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 卷号: 24, 页码: 338-351
作者:
Zheng, Aihua
;
Hu, Menglan
;
Jiang, Bo
;
Huang, Yan
;
Yan, Yan
  |  
收藏
  |  
浏览/下载:37/0
  |  
提交时间:2022/03/17
Visualization
Task analysis
Measurement
Speech recognition
Videos
Location awareness
Image recognition
Adversarial learning
audio-visual matching
cross-modal learning
metric learning
PRDP: Person Reidentification With Dirty and Poor Data
期刊论文
OAI收割
IEEE TRANSACTIONS ON CYBERNETICS, 2021, 页码: 13
作者:
Xu, Furong
;
Ma, Bingpeng
;
Chang, Hong
;
Shan, Shiguang
  |  
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2022/06/21
Training
Noise measurement
Data models
Task analysis
Training data
Predictive models
Heuristic algorithms
Dirty
metric learning
person reidentification (ReID)
poor
Question-Guided Erasing-Based Spatiotemporal Attention Learning for Video Question Answering
期刊论文
OAI收割
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 页码: 13
作者:
Liu, Fei
;
Liu, Jing
;
Hong, Richang
;
Lu, Hanqing
  |  
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2022/01/27
Spatiotemporal phenomena
Measurement
Visualization
Knowledge discovery
Task analysis
Cognition
Semantics
Erasing mechanism
metric learning
spatiotemporal attention
video question answering (VideoQA)
Adaptive Deep Metric Learning for Affective Image Retrieval and Classification
期刊论文
OAI收割
IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 卷号: 23, 页码: 1640-1653
作者:
Yao, Xingxu
;
She, Dongyu
;
Zhang, Haiwei
;
Yang, Jufeng
;
Cheng, Ming-Ming
  |  
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2021/08/15
Measurement
Visualization
Semantics
Feature extraction
Task analysis
Image analysis
Image retrieval
Affective image retrieval
convolutional neural network
deep metric learning
visual sentiment analysis
Learning to Align via Wasserstein for Person Re-Identification
期刊论文
OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 卷号: 29, 页码: 7104-7116
作者:
Zhang, Zhizhong
;
Xie, Yuan
;
Li, Ding
;
Zhang, Wensheng
;
Tian, Qi
  |  
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2020/08/03
Semantics
Heating systems
Measurement
Learning systems
Training
Estimation
Feature extraction
Person re-identification
deep metric learning
convolutional neural network
Wasserstein distance
Animated models coarsening with local area distortion and deformation degree control (EI CONFERENCE)
会议论文
OAI收割
International Conference on Image Processing and Pattern Recognition in Industrial Engineering, August 7, 2010 - August 8, 2010, Xi'an, China
作者:
Zhang S.
;
Zhao J.
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2013/03/25
In computer graphics applications
mesh coarsening is an important technique to alleviate the workload of visualization processing. Compared to the extensive works on static model approximation
very little attentions have been paid to animated models. In this paper
we propose a new method to approximate animated models with local area distortion and deformation degree control. Our method uses an improved quadric error metric guided by a local area distortion measurement as a basic hierarchy. Also
we define a deformation degree parameter to be embedded into the aggregated quadric errors
so areas with large deformation during the animation can be successfully preserved. Finally
a mesh optimization process is proposed to further reduce the geometric distortion for each frame. Our approach is fast
easy to implement
and as a result good quality dynamic approximations with well-preserved sharp features can be generated at any given frame. 2010 SPIE.
An improved method for generating multiresolution animation models (EI CONFERENCE)
会议论文
OAI收割
2009 11th IEEE International Conference on Computer-Aided Design and Computer Graphics, CAD/Graphics 2009, August 19, 2009 - August 21, 2009, Huangshan, China
作者:
Zhang S.
收藏
  |  
浏览/下载:36/0
  |  
提交时间:2013/03/25
In computer graphics
animated models are widely used to represent time-varying data. In this paper
we propose an improved method to generate multiresolution animation models. We use a curvature sensitive quadric error metric (QEM) criterion as our basic measurement
which can preserve local features on the surface. We append a deformation weight to the aggregated edge contraction cost for the whole animation to preserve areas with large deformation. At last
we introduce a mesh optimization method to deal with the animation sequence
which can efficiently improve the temporal coherence and reduce visual artifacts. The results show our approach is efficient
easy to implement
and good quality progressive animation models can be generated at any level of detail. 2009 IEEE.