中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共11条,第1-10条 帮助

条数/页: 排序方式:
Contour Primitive of Interest Extraction Network Based on Dual-Metric One-Shot Learning for Vision Measurement 期刊论文  OAI收割
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 卷号: 19, 期号: 4, 页码: 5839-5848
作者:  
Qin, Fangbo;  Lin, Shan;  Xu, De
  |  收藏  |  浏览/下载:14/0  |  提交时间:2023/11/17
Adaptively Weighted k-Tuple Metric Network for Kinship Verification 期刊论文  OAI收割
IEEE TRANSACTIONS ON CYBERNETICS, 2022, 页码: 14
作者:  
Huang, Sheng;  Lin, Jingkai;  Huangfu, Luwen;  Xing, Yun;  Hu, Junlin
  |  收藏  |  浏览/下载:32/0  |  提交时间:2022/06/10
Evolving Metric Learning for Incremental and Decremental Features 期刊论文  OAI收割
IEEE Transactions on Circuits and Systems for Video Technology, 2022, 卷号: 32, 期号: 4, 页码: 2290-2302
作者:  
Dong JH(董家华);  Cong Y(丛杨);  Sun G(孙干);  Zhang T(张涛);  Tang X(唐旭)
  |  收藏  |  浏览/下载:73/0  |  提交时间:2021/08/28
Adversarial-Metric Learning for Audio-Visual Cross-Modal Matching 期刊论文  OAI收割
IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 卷号: 24, 页码: 338-351
作者:  
Zheng, Aihua;  Hu, Menglan;  Jiang, Bo;  Huang, Yan;  Yan, Yan
  |  收藏  |  浏览/下载:37/0  |  提交时间:2022/03/17
PRDP: Person Reidentification With Dirty and Poor Data 期刊论文  OAI收割
IEEE TRANSACTIONS ON CYBERNETICS, 2021, 页码: 13
作者:  
Xu, Furong;  Ma, Bingpeng;  Chang, Hong;  Shan, Shiguang
  |  收藏  |  浏览/下载:28/0  |  提交时间:2022/06/21
Question-Guided Erasing-Based Spatiotemporal Attention Learning for Video Question Answering 期刊论文  OAI收割
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 页码: 13
作者:  
Liu, Fei;  Liu, Jing;  Hong, Richang;  Lu, Hanqing
  |  收藏  |  浏览/下载:30/0  |  提交时间:2022/01/27
Adaptive Deep Metric Learning for Affective Image Retrieval and Classification 期刊论文  OAI收割
IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 卷号: 23, 页码: 1640-1653
作者:  
Yao, Xingxu;  She, Dongyu;  Zhang, Haiwei;  Yang, Jufeng;  Cheng, Ming-Ming
  |  收藏  |  浏览/下载:26/0  |  提交时间:2021/08/15
Learning to Align via Wasserstein for Person Re-Identification 期刊论文  OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 卷号: 29, 页码: 7104-7116
作者:  
Zhang, Zhizhong;  Xie, Yuan;  Li, Ding;  Zhang, Wensheng;  Tian, Qi
  |  收藏  |  浏览/下载:30/0  |  提交时间:2020/08/03
Animated models coarsening with local area distortion and deformation degree control (EI CONFERENCE) 会议论文  OAI收割
International Conference on Image Processing and Pattern Recognition in Industrial Engineering, August 7, 2010 - August 8, 2010, Xi'an, China
作者:  
Zhang S.;  Zhao J.
收藏  |  浏览/下载:23/0  |  提交时间:2013/03/25
In computer graphics applications  mesh coarsening is an important technique to alleviate the workload of visualization processing. Compared to the extensive works on static model approximation  very little attentions have been paid to animated models. In this paper  we propose a new method to approximate animated models with local area distortion and deformation degree control. Our method uses an improved quadric error metric guided by a local area distortion measurement as a basic hierarchy. Also  we define a deformation degree parameter to be embedded into the aggregated quadric errors  so areas with large deformation during the animation can be successfully preserved. Finally  a mesh optimization process is proposed to further reduce the geometric distortion for each frame. Our approach is fast  easy to implement  and as a result good quality dynamic approximations with well-preserved sharp features can be generated at any given frame. 2010 SPIE.  
An improved method for generating multiresolution animation models (EI CONFERENCE) 会议论文  OAI收割
2009 11th IEEE International Conference on Computer-Aided Design and Computer Graphics, CAD/Graphics 2009, August 19, 2009 - August 21, 2009, Huangshan, China
作者:  
Zhang S.
收藏  |  浏览/下载:36/0  |  提交时间:2013/03/25
In computer graphics  animated models are widely used to represent time-varying data. In this paper  we propose an improved method to generate multiresolution animation models. We use a curvature sensitive quadric error metric (QEM) criterion as our basic measurement  which can preserve local features on the surface. We append a deformation weight to the aggregated edge contraction cost for the whole animation to preserve areas with large deformation. At last  we introduce a mesh optimization method to deal with the animation sequence  which can efficiently improve the temporal coherence and reduce visual artifacts. The results show our approach is efficient  easy to implement  and good quality progressive animation models can be generated at any level of detail. 2009 IEEE.