中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究... [21]
地质与地球物理研究所 [6]
沈阳自动化研究所 [6]
武汉岩土力学研究所 [5]
合肥物质科学研究院 [5]
成都山地灾害与环境研... [4]
更多
采集方式
OAI收割 [73]
内容类型
期刊论文 [56]
会议论文 [13]
SCI/SSCI论文 [4]
发表日期
2025 [1]
2023 [2]
2022 [6]
2021 [3]
2020 [13]
2019 [10]
更多
学科主题
Computer S... [1]
Ecology [1]
Engineerin... [1]
Environmen... [1]
Oceanograp... [1]
Plant Scie... [1]
更多
筛选
浏览/检索结果:
共73条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Monitoring changes and multi-scenario simulations of land use and ecosystem service values in coastal cities: A case study of Qingdao, China
期刊论文
OAI收割
ENVIRONMENTAL MONITORING AND ASSESSMENT, 2025, 卷号: 197, 期号: 2, 页码: 173
作者:
Xu, Shaojie
;
Wang, Kaiyong
;
Wang, Fuyuan
  |  
收藏
  |  
浏览/下载:6/0
  |  
提交时间:2025/02/24
Coastal urban development
Ecosystem service values
Land use monitoring
PLUS model
Trade-offs and synergies
Multi-scenario simulations
Physics-Guided Deep Learning Method for Tool Condition Monitoring in Smart Machining System
期刊论文
OAI收割
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2023
作者:
Li, Shenshen
;
Lin, Xin
;
Shi, Hu
;
Shi, Yungao
;
Zhu, Kunpeng
  |  
收藏
  |  
浏览/下载:16/0
  |  
提交时间:2023/11/17
Deep learning
physics-guided data model
tool condition monitoring
Ground subsidence mechanism of a filling mine with a steeply inclined ore body
期刊论文
OAI收割
JOURNAL OF MOUNTAIN SCIENCE, 2023, 卷号: 20, 期号: 8, 页码: 2358-2369
作者:
Li, Guang
;
Liu, Shuai-qi
;
Ma, Feng-shan
;
Guo, Jie
;
Hui, Xin
  |  
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2024/01/02
Ground subsidence
Backfill mining
Steeply inclined ore body
GPS monitoring
Rock mass movement model
Retrieval of Water Quality Parameters Based on Near-Surface Remote Sensing and Machine Learning Algorithm
期刊论文
OAI收割
REMOTE SENSING, 2022, 卷号: 14, 期号: 21
作者:
Zhao, Yubo
;
Yu, Tao
;
Hu, Bingliang
;
Zhang, Zhoufeng
;
Liu, Yuyang
  |  
收藏
  |  
浏览/下载:41/0
  |  
提交时间:2022/12/02
water quality monitoring
near-surface remote sensing
machine learning algorithm
ensemble learning model
Processing of the Quench Detection Signals for CS Model Coil of CFETR
期刊论文
OAI收割
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2022, 卷号: 32
作者:
Wang, Teng
;
Hu, Yanlan
;
Xiao, Yezheng
;
Li, Tong
  |  
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2022/12/23
Safety
Threshold voltage
Superconducting magnets
Magnetic flux
Monitoring
Plasmas
Signal sampling
CFETR
CS model coil
quench detection system
signal processing
Identifying the outlier in tunnel monitoring data: An integration model
期刊论文
OAI收割
COMPUTER COMMUNICATIONS, 2022, 卷号: 188, 页码: 145
作者:
Liu, Jinquan
;
Zou, Tongtong
  |  
收藏
  |  
浏览/下载:13/0
  |  
提交时间:2023/08/02
Tunnel engineering
Structural health monitoring
Model integration
Outlier detection
Machine learning
Diurnal and Seasonal Patterns of Calling Activity of Seven Cuculidae Species in a Forest of Eastern China
期刊论文
OAI收割
DIVERSITY-BASEL, 2022, 卷号: 14
作者:
Mei, Jinjuan
;
Puswal, Sabah Mushtaq
;
Wang, Mei
;
Liu, Fanglin
  |  
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2022/12/23
avian brood parasites
breeding season
calling activity
Cuculidae
diurnal and seasonal patterns
generalized additive model (GAM)
passive acoustic monitoring
Yaoluoping National Nature Reserve (YNNR)
A Feature Weighted Mixed Naive Bayes Model for Monitoring Anomalies in the Fan System of a Thermal Power Plant
期刊论文
OAI收割
IEEE/CAA Journal of Automatica Sinica, 2022, 卷号: 9, 期号: 4, 页码: 719-727
作者:
Min Wang, Li Sheng, Donghua Zhou, Maoyin Chen
  |  
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2022/03/09
Abnormality monitoring,continuous variables,feature weighted mixed naive Bayes model (FWMNBM),two-valued variables,thermal power plant
Remote Sensing Monitoring and Evaluation of Vegetation Changes in Hulun Buir Grassland, Inner Mongolia Autonomous Region, China
期刊论文
OAI收割
FORESTS, 2022, 卷号: 13, 期号: 12, 页码: 2186-1-20
作者:
Dong, Xi
;
Hu, Chunming
  |  
收藏
  |  
浏览/下载:6/0
  |  
提交时间:2023/02/02
Hulun Buir grassland
remote sensing monitoring
vegetation cover change
change monitoring model
A Switching Hidden Semi-Markov Model for Degradation Process and Its Application to Time-Varying Tool Wear Monitoring
期刊论文
OAI收割
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 卷号: 17
作者:
Liu, Tongshun
;
Zhu, Kunpeng
  |  
收藏
  |  
浏览/下载:37/0
  |  
提交时间:2021/03/15
Condition monitoring
degradation process
remaining useful life (RUL)
switching hidden semi-Markov model (SHSMM)
tool wear monitoring (TWM)