中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [4]
计算技术研究所 [2]
心理研究所 [1]
重庆绿色智能技术研究... [1]
西安光学精密机械研究... [1]
采集方式
OAI收割 [9]
内容类型
期刊论文 [9]
发表日期
2024 [1]
2022 [2]
2021 [1]
2019 [3]
2018 [1]
2015 [1]
更多
学科主题
筛选
浏览/检索结果:
共9条,第1-9条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
发表日期升序
发表日期降序
提交时间升序
提交时间降序
作者升序
作者降序
Convolution-Enhanced Bi-Branch Adaptive Transformer With Cross-Task Interaction for Food Category and Ingredient Recognition
期刊论文
OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 卷号: 33, 页码: 2572-2586
作者:
Liu, Yuxin
;
Min, Weiqing
;
Jiang, Shuqiang
;
Rui, Yong
  |  
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2024/05/20
Semantics
Visualization
Transformers
Task analysis
Feature extraction
Image recognition
Fish
Food recognition
ingredient recognition
food computing
fine-grained recognition
multi-label recognition
Multi-View Multi-Label Fine-Grained Emotion Decoding From Human Brain Activity
期刊论文
OAI收割
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 页码: 15
作者:
Fu, Kaicheng
;
Du, Changde
;
Wang, Shengpei
;
He, Huiguang
  |  
收藏
  |  
浏览/下载:52/0
  |  
提交时间:2022/12/27
Decoding
Brain modeling
Functional magnetic resonance imaging
Predictive models
Emotion recognition
Dimensionality reduction
Pattern recognition
Fine-grained emotion decoding
multi-label learning
multi-view learning
product of experts (PoEs)
variational autoencoder
MCFL: multi-label contrastive focal loss for deep imbalanced pedestrian attribute recognition
期刊论文
OAI收割
NEURAL COMPUTING & APPLICATIONS, 2022, 页码: 15
作者:
Chen, Lin
;
Song, Jingkuan
;
Zhang, Xuerui
;
Shang, Mingsheng
  |  
收藏
  |  
浏览/下载:41/0
  |  
提交时间:2022/08/22
Pedestrian attribute recognition
Multi-label contrastive loss
Deep convolutional neural network
Multi-label learning
Imbalanced learning
Multi-labelled proteins recognition for high-throughput microscopy images using deep convolutional neural networks
期刊论文
OAI收割
BMC BIOINFORMATICS, 2021, 卷号: 22, 期号: SUPPL 3, 页码: 14
作者:
Zhang, Enze
;
Zhang, Boheng
;
Hu, Shaohan
;
Zhang, Fa
;
Liu, Zhiyong
  |  
收藏
  |  
浏览/下载:52/0
  |  
提交时间:2021/12/01
Protein pattern recognition
DNNs
Multi-class and multi-label
Label imbalance
High-throughput microscopy images
Action Units recognition based on Deep Spatial-Convolutional and Multi-label Residual network
期刊论文
OAI收割
NEUROCOMPUTING, 2019, 卷号: 359, 页码: 130-138
作者:
Wang, Su-Jing
;
Lin, Bo
;
Wang, Yong
;
Yi, Tongqiang
;
Zou, Bochao
  |  
收藏
  |  
浏览/下载:89/0
  |  
提交时间:2019/09/10
Sample imbalance problem
AU recognition
Multi-label learning
Local convolution
Residual unit
Recurrent Prediction with Spatio-temporal Attention for Crowd Attribute Recognition
期刊论文
OAI收割
IEEE Transactions on Circuits and Systems for Video Technology, 2019, 期号: Early Access, 页码: 1 - 1
作者:
Li QZ(李乔哲)
;
Zhao X(赵鑫)
;
He R(赫然)
;
Huang KQ(黄凯奇)
;
He, Ran
  |  
收藏
  |  
浏览/下载:69/0
  |  
提交时间:2020/01/14
Crowd video understanding , Attribute recognition , Attention mechanism , Multi-label classification
A Richly Annotated Pedestrian Dataset for Person Retrieval in Real Surveillance Scenarios
期刊论文
OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 卷号: 28, 期号: 4, 页码: 1575-1590
作者:
Li, Dangwei
;
Zhang, Zhang
;
Chen, Xiaotang
;
Huang, Kaiqi
  |  
收藏
  |  
浏览/下载:71/0
  |  
提交时间:2019/07/12
Pedestrian retrieval
person re-identification
pedestrian attribute recognition
multi-label learning
A CNN–RNN architecture for multi-label weather recognition
期刊论文
OAI收割
Neurocomputing, 2018, 卷号: 322, 页码: 47-57
作者:
Zhao, Bin
;
Li, Xuelong
;
Lu, Xiaoqiang
;
Wang, Zhigang
  |  
收藏
  |  
浏览/下载:69/0
  |  
提交时间:2018/11/06
Weather Recognition
Multi-label Classification
Convolutional Lstm
Multi-label learning with missing labels for image annotation and facial action unit recognition
期刊论文
OAI收割
PATTERN RECOGNITION, 2015, 卷号: 48, 期号: 7, 页码: 2279-2289
作者:
Wu, Baoyuan
;
Lyu, Siwei
;
Hu, Bao-Gang
;
Ji, Qiang
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2015/09/21
Multi-label learning
Missing labels
Image annotation
Facial action unit recognition