中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
地理科学与资源研究所 [4]
自动化研究所 [2]
长春光学精密机械与物... [1]
采集方式
OAI收割 [7]
内容类型
期刊论文 [4]
SCI/SSCI论文 [1]
会议论文 [1]
学位论文 [1]
发表日期
2021 [1]
2018 [3]
2016 [1]
2012 [1]
2009 [1]
学科主题
筛选
浏览/检索结果:
共7条,第1-7条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Bifurcated Backbone Strategy for RGB-D Salient Object Detection
期刊论文
OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 卷号: 30, 页码: 8727-8742
作者:
Zhai, Yingjie
;
Fan, Deng-Ping
;
Yang, Jufeng
;
Borji, Ali
;
Shao, Ling
  |  
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2021/12/28
RGB-D salient object detection
bifurcated backbone strategy
multi-level features
cascaded refinement
Using multi-level fusion of local features for land-use scene classification with high spatial resolution images in urban coastal zones
期刊论文
OAI收割
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 卷号: 70, 页码: 1-12
作者:
Lu, Chen
;
Yang, Xiaomei
;
Wang, Zhihua
;
Li, Zhi
  |  
收藏
  |  
浏览/下载:36/0
  |  
提交时间:2019/05/23
Land-use scene classification
Local features fusion
Multi-level
Urban coastal zones
Using multi-level fusion of local features for land-use scene classification with high spatial resolution images in urban coastal zones
期刊论文
OAI收割
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 卷号: 70, 页码: 1-12
作者:
Lu, Chen
;
Yang, Xiaomei
;
Wang, Zhihua
;
Li, Zhi
  |  
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2019/05/23
Land-use scene classification
Local features fusion
Multi-level
Urban coastal zones
Using multi-level fusion of local features for land-use scene classification with high spatial resolution images in urban coastal zones
期刊论文
OAI收割
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 卷号: 70, 页码: 1-12
作者:
Lu, Chen
;
Yang, Xiaomei
;
Wang, Zhihua
;
Li, Zhi
  |  
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2019/05/23
Land-use scene classification
Local features fusion
Multi-level
Urban coastal zones
Multi-Scale Blobs for Saliency Detection in Satellite Images
SCI/SSCI论文
OAI收割
2016
作者:
Zhou Y. N.
;
Luo, J. C.
;
Hu, X. D.
;
Shen, Z. F.
;
Yu, GR
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2016/12/16
Multi-scale blob
Multi-level distance transform
Salient region
Object
center
Satellite image
remote-sensing images
features
scale
面向第二语言学习的作文自动评估技术
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2012
作者:
彭星源
收藏
  |  
浏览/下载:140/0
  |  
提交时间:2015/09/02
作文自动评估
主题内容一致分析
潜在语义分析
词汇评分
多层面文本特征
有限状态转换
automated essay assessment
topic content consistent analysis
latent semantic analysis
word score
multi-level text features
finite state transducer
Using bidirectional binary particle swarm optimization for feature selection in feature-level fusion recognition system (EI CONFERENCE)
会议论文
OAI收割
2009 4th IEEE Conference on Industrial Electronics and Applications, ICIEA 2009, May 25, 2009 - May 27, 2009, Xi'an, China
作者:
Wang D.
;
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2013/03/25
In feature-level fusion recognition system
the other is optimizing system sensor design to get outstanding cost performance. So feature selection become usually necessary to reduce dimensionality of the combination of multi-sensor features and improve system performance in system design. In general
there are two main missions. One is improving the recognition correct rate as soon as possible
the optimization is usually applied to feature selection because of its computational feasibility and validity. For further improving recognition accuracy and reducing selected feature dimensions
this paper presents a more rational and accurate optimization
Bidirectional Binary Particle Swarm Optimization (BBPSO) algorithm for feature selection in feature-level fusion target recognition system. In addition
we introduce a new evaluating function as criterion function in BBPSO feature selection method. At the last
we utilized Leave-One-Out method to validate the proposed method. The experiment results show that the proposed algorithm improves classification accuracy by two percentage points
while the selected feature dimensions are less one dimension than original Particle Swarm Optimization approach with 16 original feature dimensions. 2009 IEEE.