中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共7条,第1-7条 帮助

条数/页: 排序方式:
Bifurcated Backbone Strategy for RGB-D Salient Object Detection 期刊论文  OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 卷号: 30, 页码: 8727-8742
作者:  
Zhai, Yingjie;  Fan, Deng-Ping;  Yang, Jufeng;  Borji, Ali;  Shao, Ling
  |  收藏  |  浏览/下载:24/0  |  提交时间:2021/12/28
Using multi-level fusion of local features for land-use scene classification with high spatial resolution images in urban coastal zones 期刊论文  OAI收割
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 卷号: 70, 页码: 1-12
作者:  
Lu, Chen;  Yang, Xiaomei;  Wang, Zhihua;  Li, Zhi
  |  收藏  |  浏览/下载:36/0  |  提交时间:2019/05/23
Using multi-level fusion of local features for land-use scene classification with high spatial resolution images in urban coastal zones 期刊论文  OAI收割
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 卷号: 70, 页码: 1-12
作者:  
Lu, Chen;  Yang, Xiaomei;  Wang, Zhihua;  Li, Zhi
  |  收藏  |  浏览/下载:17/0  |  提交时间:2019/05/23
Using multi-level fusion of local features for land-use scene classification with high spatial resolution images in urban coastal zones 期刊论文  OAI收割
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 卷号: 70, 页码: 1-12
作者:  
Lu, Chen;  Yang, Xiaomei;  Wang, Zhihua;  Li, Zhi
  |  收藏  |  浏览/下载:18/0  |  提交时间:2019/05/23
Multi-Scale Blobs for Saliency Detection in Satellite Images SCI/SSCI论文  OAI收割
2016
作者:  
Zhou Y. N.;  Luo, J. C.;  Hu, X. D.;  Shen, Z. F.;  Yu, GR
收藏  |  浏览/下载:24/0  |  提交时间:2016/12/16
面向第二语言学习的作文自动评估技术 学位论文  OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院研究生院, 2012
作者:  
彭星源
收藏  |  浏览/下载:140/0  |  提交时间:2015/09/02
Using bidirectional binary particle swarm optimization for feature selection in feature-level fusion recognition system (EI CONFERENCE) 会议论文  OAI收割
2009 4th IEEE Conference on Industrial Electronics and Applications, ICIEA 2009, May 25, 2009 - May 27, 2009, Xi'an, China
作者:  
Wang D.;  Wang Y.;  Wang Y.;  Wang Y.;  Wang Y.
收藏  |  浏览/下载:21/0  |  提交时间:2013/03/25
In feature-level fusion recognition system  the other is optimizing system sensor design to get outstanding cost performance. So feature selection become usually necessary to reduce dimensionality of the combination of multi-sensor features and improve system performance in system design. In general  there are two main missions. One is improving the recognition correct rate as soon as possible  the optimization is usually applied to feature selection because of its computational feasibility and validity. For further improving recognition accuracy and reducing selected feature dimensions  this paper presents a more rational and accurate optimization  Bidirectional Binary Particle Swarm Optimization (BBPSO) algorithm for feature selection in feature-level fusion target recognition system. In addition  we introduce a new evaluating function as criterion function in BBPSO feature selection method. At the last  we utilized Leave-One-Out method to validate the proposed method. The experiment results show that the proposed algorithm improves classification accuracy by two percentage points  while the selected feature dimensions are less one dimension than original Particle Swarm Optimization approach with 16 original feature dimensions. 2009 IEEE.