中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [7]
长春光学精密机械与物... [2]
西安光学精密机械研究... [1]
采集方式
OAI收割 [10]
内容类型
期刊论文 [8]
会议论文 [2]
发表日期
2023 [1]
2020 [1]
2019 [2]
2018 [1]
2016 [1]
2012 [1]
更多
学科主题
筛选
浏览/检索结果:
共10条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Deep Gradient Learning for Efficient Camouflaged Object Detection
期刊论文
OAI收割
Machine Intelligence Research, 2023, 卷号: 20, 期号: 1, 页码: 92-108
作者:
Ge-Peng Ji
;
Deng-Ping Fan
;
Yu-Cheng Chou
;
Dengxin Dai
;
Alexander Liniger
  |  
收藏
  |  
浏览/下载:12/0
  |  
提交时间:2024/04/23
Camouflaged object detection (COD)
object gradient
soft grouping
efficient model
image segmentation
An Ultrahigh-Speed Object Detection Method With Projection-Based Position Compensation
期刊论文
OAI收割
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 卷号: 69, 期号: 7, 页码: 4796-4806
作者:
Li, Jianquan
;
Long, Xianlei
;
Xu, De
;
Gu, Qingyi
;
Ishii, Idaku
  |  
收藏
  |  
浏览/下载:46/0
  |  
提交时间:2020/08/03
Field-programmable gate array (FPGA)
hardware implementation
histogram of oriented gradient (HOG)
object detection
pixel projection
ultrahigh-speed vision
An FPGA-Based Ultra-High-Speed Object Detection Algorithm with Multi-Frame Information Fusion
期刊论文
OAI收割
SENSORS, 2019, 卷号: 19, 期号: 17, 页码: 16
作者:
Long, Xianlei
  |  
收藏
  |  
浏览/下载:78/0
  |  
提交时间:2019/12/16
ultra-high-speed vision
object detection
field-programmable gate array
histogram of oriented gradient
multi-frame information fusion model
A Hardware-Oriented Algorithm for Ultra-High-Speed Object Detection
期刊论文
OAI收割
IEEE SENSORS JOURNAL, 2019, 卷号: 19, 期号: 10, 页码: 3818-3831
作者:
  |  
收藏
  |  
浏览/下载:76/0
  |  
提交时间:2019/07/12
Hardware implementation
high-frame-rate vision
field-programmable gate array
multi-object detection
histograms of oriented gradient
support vector machine
Ship Detection in Optical Remote Sensing Images Based on Saliency and a Rotation-Invariant Descriptor
期刊论文
OAI收割
Remote Sensing, 2018, 卷号: 10, 期号: 3, 页码: 19
作者:
Dong, C.
;
Liu, J. H.
;
Xu, F.
  |  
收藏
  |  
浏览/下载:12/0
  |  
提交时间:2019/09/17
remote sensing
visual saliency
radial gradient transform
covariance
matrix
Gaussian SVM
detection scheme
object detection
model
shape
Remote Sensing
Study on the deep neural network of intelligent image detection and the improvement of elastic momentum on image recognition
期刊论文
OAI收割
journal of computational and theoretical nanoscience, 2016, 卷号: 13, 期号: 5, 页码: 3326-3330
作者:
Yue, Qi
;
Ma, Caiwen
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2016/10/12
Gradient methods
Image recognition
Object recognition
Target tracking
Online multiple instance gradient feature selection for robust visual tracking
期刊论文
OAI收割
PATTERN RECOGNITION LETTERS, 2012, 卷号: 33, 期号: 9, 页码: 1075-1082
作者:
Xie, Yuan
;
Qu, Yanyun
;
Li, Cuihua
;
Zhang, Wensheng
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2015/09/18
Gradient-based feature selection
HOG
Multiple Instance Learning
Online object tracking
Boosting part-sense multi-feature learners toward effective object detection
期刊论文
OAI收割
COMPUTER VISION AND IMAGE UNDERSTANDING, 2011, 卷号: 115, 期号: 3, 页码: 364-374
作者:
Chen, Shi
;
Wang, Jinqiao
;
Ouyang, Yi
;
Wang, Bo
;
Xu, Changsheng
收藏
  |  
浏览/下载:24/0
  |  
提交时间:2015/08/12
AdaBoost
Object detection
Multi-feature learners
L(1)-regularized gradient boosting
3D Model Based Vehicle Tracking by Optimizing Gradient Based Fitness Evaluation
会议论文
OAI收割
Istanbul, Turkey, 2010
作者:
Zhaoxiang Zhang
;
Kaiqi Huang
;
Tieniu Tan
;
Yunhong Wang
  |  
收藏
  |  
浏览/下载:12/0
  |  
提交时间:2016/12/30
Gradient Methods
object Detection
particle Filtering
A new segmentation method of CR images based on discrete wavelet transform and mathematics morphology (EI CONFERENCE)
会议论文
OAI收割
ICO20: Optical Information Processing, August 21, 2005 - August 26, 2005, Changchun, China
作者:
Li Z.
;
Li Z.
收藏
  |  
浏览/下载:68/0
  |  
提交时间:2013/03/25
In this paper
we propose a segmentation method of CR(computed radiography) images with being rid of under-segmentation and over-segmentation. An under-segmentation occurs when pixels belonging to different objects are grouped into a single region. Such errors are the most dangerous because they can invalidate the whole segmentation process. The phenomenon always takes place when we segment CR images because of the principle of CR. In order to depressed under-segmentation
we enhance the CR images using DWT (discrete wavelet transform) to get more detail of CR image features. As we enhance the CR image
the over-segmentation maybe occurs. Compared with under-segmentation
the over-segmentation occurs when a single objects is subdivided by segmentation into several region. For the purpose of preventing from the over-segmentation
we present a scheme for enhanced CR images based on watershed algorithm that solves over-segmentation problem. We use marker-based watershed algorithm. Together with gradient image and marker image
watershed segmentation can make sure to partition CR image into meaningful object and avoid further segmentation of homogeneous regions. The result of the proposed algorithm are compared with those of other standard methods. Experiments have shown a better result and indeed solved under-segmentation and over-segmentation problems.