中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共10条,第1-10条 帮助

条数/页: 排序方式:
Deep Gradient Learning for Efficient Camouflaged Object Detection 期刊论文  OAI收割
Machine Intelligence Research, 2023, 卷号: 20, 期号: 1, 页码: 92-108
作者:  
Ge-Peng Ji;  Deng-Ping Fan;  Yu-Cheng Chou;  Dengxin Dai;  Alexander Liniger
  |  收藏  |  浏览/下载:12/0  |  提交时间:2024/04/23
An Ultrahigh-Speed Object Detection Method With Projection-Based Position Compensation 期刊论文  OAI收割
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 卷号: 69, 期号: 7, 页码: 4796-4806
作者:  
Li, Jianquan;  Long, Xianlei;  Xu, De;  Gu, Qingyi;  Ishii, Idaku
  |  收藏  |  浏览/下载:46/0  |  提交时间:2020/08/03
An FPGA-Based Ultra-High-Speed Object Detection Algorithm with Multi-Frame Information Fusion 期刊论文  OAI收割
SENSORS, 2019, 卷号: 19, 期号: 17, 页码: 16
作者:  
Long, Xianlei
  |  收藏  |  浏览/下载:78/0  |  提交时间:2019/12/16
A Hardware-Oriented Algorithm for Ultra-High-Speed Object Detection 期刊论文  OAI收割
IEEE SENSORS JOURNAL, 2019, 卷号: 19, 期号: 10, 页码: 3818-3831
作者:  
  |  收藏  |  浏览/下载:76/0  |  提交时间:2019/07/12
Ship Detection in Optical Remote Sensing Images Based on Saliency and a Rotation-Invariant Descriptor 期刊论文  OAI收割
Remote Sensing, 2018, 卷号: 10, 期号: 3, 页码: 19
作者:  
Dong, C.;  Liu, J. H.;  Xu, F.
  |  收藏  |  浏览/下载:12/0  |  提交时间:2019/09/17
Study on the deep neural network of intelligent image detection and the improvement of elastic momentum on image recognition 期刊论文  OAI收割
journal of computational and theoretical nanoscience, 2016, 卷号: 13, 期号: 5, 页码: 3326-3330
作者:  
Yue, Qi;  Ma, Caiwen
收藏  |  浏览/下载:25/0  |  提交时间:2016/10/12
Online multiple instance gradient feature selection for robust visual tracking 期刊论文  OAI收割
PATTERN RECOGNITION LETTERS, 2012, 卷号: 33, 期号: 9, 页码: 1075-1082
作者:  
Xie, Yuan;  Qu, Yanyun;  Li, Cuihua;  Zhang, Wensheng
收藏  |  浏览/下载:30/0  |  提交时间:2015/09/18
Boosting part-sense multi-feature learners toward effective object detection 期刊论文  OAI收割
COMPUTER VISION AND IMAGE UNDERSTANDING, 2011, 卷号: 115, 期号: 3, 页码: 364-374
作者:  
Chen, Shi;  Wang, Jinqiao;  Ouyang, Yi;  Wang, Bo;  Xu, Changsheng
收藏  |  浏览/下载:24/0  |  提交时间:2015/08/12
3D Model Based Vehicle Tracking by Optimizing Gradient Based Fitness Evaluation 会议论文  OAI收割
Istanbul, Turkey, 2010
作者:  
Zhaoxiang Zhang;  Kaiqi Huang;  Tieniu Tan;  Yunhong Wang
  |  收藏  |  浏览/下载:12/0  |  提交时间:2016/12/30
A new segmentation method of CR images based on discrete wavelet transform and mathematics morphology (EI CONFERENCE) 会议论文  OAI收割
ICO20: Optical Information Processing, August 21, 2005 - August 26, 2005, Changchun, China
作者:  
Li Z.;  Li Z.
收藏  |  浏览/下载:68/0  |  提交时间:2013/03/25
In this paper  we propose a segmentation method of CR(computed radiography) images with being rid of under-segmentation and over-segmentation. An under-segmentation occurs when pixels belonging to different objects are grouped into a single region. Such errors are the most dangerous because they can invalidate the whole segmentation process. The phenomenon always takes place when we segment CR images because of the principle of CR. In order to depressed under-segmentation  we enhance the CR images using DWT (discrete wavelet transform) to get more detail of CR image features. As we enhance the CR image  the over-segmentation maybe occurs. Compared with under-segmentation  the over-segmentation occurs when a single objects is subdivided by segmentation into several region. For the purpose of preventing from the over-segmentation  we present a scheme for enhanced CR images based on watershed algorithm that solves over-segmentation problem. We use marker-based watershed algorithm. Together with gradient image and marker image  watershed segmentation can make sure to partition CR image into meaningful object and avoid further segmentation of homogeneous regions. The result of the proposed algorithm are compared with those of other standard methods. Experiments have shown a better result and indeed solved under-segmentation and over-segmentation problems.