中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [1]
数学与系统科学研究院 [1]
生态环境研究中心 [1]
采集方式
OAI收割 [3]
内容类型
期刊论文 [2]
会议论文 [1]
发表日期
2016 [1]
2015 [1]
2011 [1]
学科主题
筛选
浏览/检索结果:
共3条,第1-3条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Tuning of Sampled-Data ADRC for Nonlinear Uncertain Systems
期刊论文
OAI收割
JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2016, 卷号: 29, 期号: 5, 页码: 1187-1211
作者:
Xue Wenchao
;
Huang Yi
  |  
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2018/07/30
Active disturbance rejection control (ADRC)
extended state observer
nonlinear uncertain systems
parameters tuning
sampled-data control
Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery
期刊论文
OAI收割
REMOTE SENSING, 2015, 卷号: 7, 期号: 1, 页码: 153-168
作者:
Qian, Yuguo
;
Zhou, Weiqi
;
Yan, Jingli
;
Li, Weifeng
;
Han, Lijian
收藏
  |  
浏览/下载:16/0
  |  
提交时间:2016/03/03
object-based classification
machine learning classifiers
very high resolution image
urban area
tuning parameters
A fuzzy control method based on information integration for double inverted pendulum (EI CONFERENCE)
会议论文
OAI收割
2011 2nd International Conference on Digital Manufacturing and Automation, ICDMA 2011, August 5, 2011 - August 7, 2011, Zhangjiajie, Hunan, China
作者:
Fan Y.
收藏
  |  
浏览/下载:59/0
  |  
提交时间:2013/03/25
This article proposes a new fuzzy controller based on information integration. The mathematical model of Linear double inverted pendulum has been studied and estabLished with dynamics analytical method and LQR theory is used to design the optimal Linear inverted pendulum controller
then
the integration technology is used to design the variable parameters self-tuning fuzzy controller. Thereby
the fuzzy controller input variable dimension and the number of fuzzy control rules have been extremely reduced. Two controllers are designed for inverted pendulum system control and the comparison simulation experiments have been done. The results show that the controllers can both reaLize good control
and the fuzzy controller has higher precision
faster response
better stabiLity and robustness. 2011 IEEE.