中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [4]
长春光学精密机械与物... [3]
上海神经科学研究所 [1]
上海药物研究所 [1]
昆明植物研究所 [1]
武汉物理与数学研究所 [1]
更多
采集方式
OAI收割 [13]
内容类型
期刊论文 [11]
会议论文 [2]
发表日期
2024 [1]
2022 [1]
2021 [2]
2020 [1]
2019 [2]
2016 [1]
更多
学科主题
Chemistry [1]
Immunology [1]
Life Scien... [1]
computer s... [1]
engineerin... [1]
筛选
浏览/检索结果:
共13条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Source-Guided Target Feature Reconstruction for Cross-Domain Classification and Detection
期刊论文
OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 卷号: 33, 页码: 2808-2822
作者:
Jiao, Yifan
;
Yao, Hantao
;
Bao, Bing-Kun
;
Xu, Changsheng
  |  
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2024/07/03
Source-guided target feature reconstruction
cross-domain image classification
cross-domain object detection
Holographic Feature Learning of Egocentric-Exocentric Videos for Multi-Domain Action Recognition
期刊论文
OAI收割
IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 卷号: 24, 页码: 2273-2286
作者:
Huang, Yi
;
Yang, Xiaoshan
;
Gao, Junyun
;
Xu, Changsheng
  |  
收藏
  |  
浏览/下载:32/0
  |  
提交时间:2022/07/25
Videos
Feature extraction
Visualization
Task analysis
Computational modeling
Target recognition
Prototypes
Egocentric videos
exocentric videos
holographic feature
multi-domain
action recognition
Attention-Based Multi-Source Domain Adaptation
期刊论文
OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 卷号: 30, 页码: 3793-3803
作者:
Zuo, Yukun
;
Yao, Hantao
;
Xu, Changsheng
  |  
收藏
  |  
浏览/下载:36/0
  |  
提交时间:2021/05/06
Correlation
Adaptation models
Feature extraction
Target recognition
Data models
Transfer learning
Visualization
Multi-source domain adaptation
attention-based multi-source domain adaptation
weighted moment distance
Attention Guided Multiple Source and Target Domain Adaptation
期刊论文
OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 卷号: 30, 页码: 892-906
作者:
Wang, Yuxi
;
Zhang, Zhaoxiang
;
Hao, Wangli
;
Song, Chunfeng
  |  
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2021/03/02
Semantics
Task analysis
Generators
Generative adversarial networks
Feature extraction
Visualization
Meteorology
Domain adaptation
multiple source and target domains
attention
FoxP3 in T-reg cell biology: a molecular and structural perspective
期刊论文
OAI收割
CLINICAL AND EXPERIMENTAL IMMUNOLOGY, 2020, 卷号: 199, 期号: 3, 页码: 255-262
作者:
Deng, G.
;
Song, X.
;
Greene, M. I.
;
,
  |  
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2020/12/21
TRANSCRIPTION FACTOR FOXP3
TARGET GENES
PROTEIN
STABILITY
DOMAIN
ALPHA
DIFFERENTIATION
TRANSPLANTATION
AUTOIMMUNITY
DEACETYLASES
Solution structure of the RNA recognition domain of METTL3-METTL14 N-6-methyladenosine methyltransferase
期刊论文
OAI收割
PROTEIN & CELL, 2019, 卷号: 10, 期号: 4, 页码: 272-284
作者:
Tang, Chun
;
Yin, Ping
;
Zou, Tingting
;
Zhang, Delin
;
Wang, Xiang
  |  
收藏
  |  
浏览/下载:72/0
  |  
提交时间:2019/06/24
RNA modification
N-6-methyladenosine
METTL3
target recognition domain
zinc finger
paramagnetic relaxation enhancement
Space Target Detection in Complicated Situations for Wide-Field Surveillance
期刊论文
OAI收割
Ieee Access, 2019, 卷号: 7, 页码: 123658-123670
作者:
M.Y.Li
;
C.X.Yan
;
C.H.Hu
;
C.Y.Liu
;
L.Z.Xu
  |  
收藏
  |  
浏览/下载:28/0
  |  
提交时间:2020/08/24
Space target detection,wide-field surveillance,complicated situations,spatiotemporal pipeline,multistage hypothesis testing (MHT),domain awareness,debris detection,tracking,algorithm,objects,Computer Science,Engineering,Telecommunications
Discriminative Transfer Subspace Learning via Low-Rank and Sparse Representation
期刊论文
OAI收割
ieee transactions on image processing, 2016, 卷号: 25, 期号: 2, 页码: 850-863
作者:
Xu, Yong
;
Fang, Xiaozhao
;
Wu, Jian
;
Li, Xuelong
;
Zhang, David
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2016/11/03
Source domain
target domain
low-rank and sparse constraints
knowledge transfer
subspace learning
Genome-wide survey and expression profiles of the AP2/ERF family in castor bean (Ricinus communis L.)
期刊论文
OAI收割
BMC GENOMICS, 2013, 卷号: 14, 页码: 785
作者:
Xu, Wei
;
Li, Fei
;
Ling, Lizhen
;
Liu, Aizhong
收藏
  |  
浏览/下载:83/0
  |  
提交时间:2014/03/06
DNA-BINDING DOMAIN
ETHYLENE-RESPONSIVE ELEMENT
HOMEOTIC GENE APETALA2
CIS-ACTING ELEMENT
TRANSCRIPTION FACTORS
ARABIDOPSIS-THALIANA
DISEASE RESISTANCE
FLOWER DEVELOPMENT
TARGET GENES
SALT STRESS
Multi-focus image fusion algorithm based on adaptive PCNN and wavelet transform (EI CONFERENCE)
会议论文
OAI收割
International Symposium on Photoelectronic Detection and Imaging 2011: Advances in Imaging Detectors and Applications, May 24, 2011 - May 26, 2011, Beijing, China
Wu Z.-G.
;
Wang M.-J.
;
Han G.-L.
收藏
  |  
浏览/下载:75/0
  |  
提交时间:2013/03/25
Being an efficient method of information fusion
image fusion has been used in many fields such as machine vision
medical diagnosis
military applications and remote sensing.In this paper
Pulse Coupled Neural Network (PCNN) is introduced in this research field for its interesting properties in image processing
including segmentation
target recognition et al.
and a novel algorithm based on PCNN and Wavelet Transform for Multi-focus image fusion is proposed. First
the two original images are decomposed by wavelet transform. Then
based on the PCNN
a fusion rule in the Wavelet domain is given. This algorithm uses the wavelet coefficient in each frequency domain as the linking strength
so that its value can be chosen adaptively. Wavelet coefficients map to the range of image gray-scale. The output threshold function attenuates to minimum gray over time. Then all pixels of image get the ignition. So
the output of PCNN in each iteration time is ignition wavelet coefficients of threshold strength in different time. At this moment
the sequences of ignition of wavelet coefficients represent ignition timing of each neuron. The ignition timing of PCNN in each neuron is mapped to corresponding image gray-scale range
which is a picture of ignition timing mapping. Then it can judge the targets in the neuron are obvious features or not obvious. The fusion coefficients are decided by the compare-selection operator with the firing time gradient maps and the fusion image is reconstructed by wavelet inverse transform. Furthermore
by this algorithm
the threshold adjusting constant is estimated by appointed iteration number. Furthermore
In order to sufficient reflect order of the firing time
the threshold adjusting constant is estimated by appointed iteration number. So after the iteration achieved
each of the wavelet coefficient is activated. In order to verify the effectiveness of proposed rules
the experiments upon Multi-focus image are done. Moreover
comparative results of evaluating fusion quality are listed. The experimental results show that the method can effectively enhance the edge details and improve the spatial resolution of the image. 2011 SPIE.