中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共5条,第1-5条 帮助

条数/页: 排序方式:
Telescope alignment based on the structured lighting of collimated laser beam bundles 会议论文  OAI收割
Montréal, Québec, Canada, 2022-8-29
作者:  
Li ZY(李正阳);  Jiang X(姜鑫);  Han ZJ(韩子健);  Yuan XY(袁祥岩)
  |  收藏  |  浏览/下载:32/0  |  提交时间:2023/03/22
Computation of misalignment and primary mirror astigmatism figure error of two-mirror telescopes 期刊论文  OAI收割
Journal of Astronomical Telescopes Instruments and Systems, 2018, 卷号: 4, 期号: 1, 页码: 10
作者:  
Gu, Z. Y.;  Wang, Y.;  Ju, G. H.;  Yan, C. X.
  |  收藏  |  浏览/下载:145/0  |  提交时间:2019/09/17
Desensitization design method of unobscured three-mirror anastigmatic optical systems with an adjustment-optimization-evaluation process 期刊论文  OAI收割
Applied Optics, 2018, 卷号: 57, 期号: 6, 页码: 1472-1481
作者:  
Meng, Q. Y.;  Wang, H. Y.;  Wang, W.;  Yan, Z. Q.
  |  收藏  |  浏览/下载:21/0  |  提交时间:2019/09/17
Study on spectrograph for ionosphere: A broadband imaging instrument prototype for far-ultraviolet (EI CONFERENCE) 会议论文  OAI收割
International Symposium on Photoelectronic Detection and Imaging 2011: Space Exploration Technologies and Applications, May 24, 2011 - May 26, 2011, Beijing, China
作者:  
Wang S.-R.;  Lin G.-Y.;  Yu L.
收藏  |  浏览/下载:35/0  |  提交时间:2013/03/25
Current research on space-based exploration for the ionosphere needs more advanced technologies. Because the spectral signals in the ionosphere distributing basically in the far-ultraviolet waveband are very weak. Usual spectrometer structures and detectors such as CCD can't receive enough information. Based on this principle of atmospheric sounding  the imaging spectrometer prototype for ionosphere detection application was designed to solve the problem. This prototype consists of the telescope and the imaging spectrometer. The simple structure and small number of mirrors can help higher transmission efficiency be achieved and weak signals detection be implemented. The telescope is an off-axis parabolic mirror and the spectrometer is a modified Czerny-Turner spectral imaging system. Modified Czerny-Turner spectrometer contains a spherical mirror  a fixed plane grating and a toroidal mirror. By adjusting the incident angle to the collimating mirror and using toroidal mirror  coma and astigmatism were corrected well. We also optimize distances between the grating to the focusing mirror and the focusing mirror to the image plane to improve disadvantages of traditional Czerny-Turner structure. Designed results demonstrate that aberrations are substantially corrected  and high image quality can be obtained in broad waveband. The photon counting Wedge-Strip-Anode detector with micro-channel planes as the receiving plane is accepted for the instrument prototype. The other photon counting 2-D detector responding well for weak light such as Cross-Delay line detector and MAMA detector can also be used for detection. The calibration and performances testing system is made of a vacuum system  a deuterium lamp  a monochrometer and the instrument prototype. Results obtained from the experiment show that the spectral resolution is 2.4 nm and the spatial resolution is 80 m. The other calibration experiments are running. The technology of the spectrometer prototype is important for the research and applications of ionosphere remote sensing. 2011 SPIE.  
Optical system of large relative aperture and wide field using aspheric corrector for detecting (EI CONFERENCE) 会议论文  OAI收割
4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies, November 19, 2008 - November 21, 2008, Chengdu, China
作者:  
Zhang J.;  Zhang J.;  Zhang J.;  Wang J.
收藏  |  浏览/下载:21/0  |  提交时间:2013/03/25
The magnitude requirement of space target detecting determines that the image of detecting telescope should have several performances: small spots  the wider field of view  small 80% encircled energy diameter and good MTF(Modulation transfer function). So the aperture and field of view of optical system have some demands accordingly. The larger aperture  the more extensive range which the telescope searches. Now most of ground telescopes whose apertures are from 500mm to 1000mm is on-axis optical system  the more energy that telescope collects and higher magnitude the telescope detects  so wide field of view becomes the most importance problem. To obtain large relative aperture and wide field of view  the paper introduces a catadioptric telescope with small aperture aspheric refractive corrector  whose conic surface will be used to remove the aberrations due to large relative aperture and wide field of view. As to the optical system  there is only one aspheric refractive corrector  and it is relatively easy for manufacturing because of its concave figure and normal material. The paper gives the example  and optimizes this optical system with ZEMAX program. And then the paper provides a specific analysis program for testing the aspheric refractive corrector. The aperture of this optical system is 750mm  and its relative aperture is 0.82  and the field of view is 3.6 diameter(diagonal). Its structure is simple and the image quality is also very good. 2009 SPIE.