中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [5]
地理科学与资源研究所 [3]
长春光学精密机械与物... [3]
沈阳自动化研究所 [1]
采集方式
OAI收割 [12]
内容类型
会议论文 [4]
期刊论文 [4]
SCI/SSCI论文 [2]
学位论文 [2]
发表日期
2024 [1]
2023 [1]
2016 [3]
2014 [1]
2013 [1]
2011 [3]
更多
学科主题
筛选
浏览/检索结果:
共12条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Multi-faceted spatio-temporal network for weather-aware air traffic flow prediction in multi-airport system
期刊论文
OAI收割
CHINESE JOURNAL OF AERONAUTICS, 2024, 卷号: 37, 期号: 7, 页码: 301-316
作者:
Cai, Kaiquan
;
Tang, Shuo
;
Qian, Shengsheng
;
Shen, Zhiqi
;
Yang, Yang
  |  
收藏
  |  
浏览/下载:14/0
  |  
提交时间:2024/09/09
Air traffic control
Graph neural network
Multi-faceted information
Air traffic flow prediction
Multi-airport system
Preliminary Concept of Urban Air Mobility Traffic Rules
期刊论文
OAI收割
DRONES, 2023, 卷号: 7, 期号: 1, 页码: 22
作者:
Qu, Wenqiu
;
Xu, Chenchen
;
Tan, Xiang
;
Tang, Anqi
;
He, Hongbo
  |  
收藏
  |  
浏览/下载:32/0
  |  
提交时间:2023/03/03
urban air mobility
traffic rules
traffic flow control
eVTOL aircraft
A model-based demand-balancing control for dynamically divided multiple urban subnetworks
期刊论文
OAI收割
JOURNAL OF ADVANCED TRANSPORTATION, 2016, 卷号: 50, 期号: 6, 页码: 1046-1060
作者:
Lin, Shu
;
Kong, Qing-Jie
;
Huang, Qingming
收藏
  |  
浏览/下载:32/0
  |  
提交时间:2017/02/14
traffic network control
urban road network
macroscopic fundamental diagram
traffic flow equilibrium
REINFORCEMENT LEARNING FOR RAMP CONTROL: AN ANALYSIS OF LEARNING PARAMETERS
SCI/SSCI论文
OAI收割
2016
作者:
Lu C.
;
Huang, J.
;
Gong, J. W.
;
Deng, Y.
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2016/12/16
reinforcement learning
Q-learning
ramp control
agent
macroscopic
traffic flow model
freeway
model
REINFORCEMENT LEARNING FOR RAMP CONTROL: AN ANALYSIS OF LEARNING PARAMETERS
SCI/SSCI论文
OAI收割
2016
作者:
Lu C.
;
Huang, J.
;
Gong, J. W.
  |  
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2017/11/09
reinforcement learning
Q-learning
ramp control
agent
macroscopic
traffic flow model
freeway
model
A Simulation Analysis on the Existence of Network Traffic Flow Equilibria
期刊论文
OAI收割
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2014, 卷号: 15, 期号: 4, 页码: 1706-1713
作者:
Lin, Shu
;
Kong, Qing-Jie
;
Huang, Qingming
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2015/08/12
Macroscopic fundamental diagram (MFD)
traffic flow equilibrium
traffic network control
基于ACP的智能交通系统云服务平台研究
学位论文
OAI收割
工学博士, 中国科学院自动化研究所: 中国科学院大学, 2013
作者:
李双双
收藏
  |  
浏览/下载:101/0
  |  
提交时间:2015/09/02
智能交通系统
平行系统理论
ACP
云计算
Hadoop
交通流预测
控制代理
Intelligent Transportation Systems
Parallel System Theory
ACP Method
Cloud Computing
Hadoop
Traffic Flow Forecasting
Control Agent
Energy-consumption-related robust optimization scheduling strategy for elevator group control system (EI CONFERENCE)
会议论文
OAI收割
2011 IEEE 5th International Conference on Cybernetics and Intelligent Systems, CIS 2011, September 17, 2011 - September 19, 2011, Qingdao, China
作者:
Wang F.
;
Wang F.
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2013/03/25
Group elevator scheduling (GES) problem is an optimization problem. In this work
a robust optimization scheduling method is proposed to solve elevator group control system problem with passenger traffic flow uncertainty. An uncertain optimization model of elevator group scheduling is set up based on considering both energy consumption and waiting time. When considering the uncertainty of passenger traffic flow
the model is an uncertain optimization problem. It is tuned into its robust counterpart (RC) based on robust optimization theory. The simulation experiment presents the proposed scheduling method's scheduling performance. 2011 IEEE.
Neural network based online traffic signal controller design with reinforcement training (EI CONFERENCE)
会议论文
OAI收割
14th IEEE International Intelligent Transportation Systems Conference, ITSC 2011, October 5, 2011 - October 7, 2011, Washington, DC, United states
Dai Y.
;
Hu J.
;
Zhao D.
;
Zhu F.
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2013/03/25
Traffic congestion leads to problems like delays
decreasing flow rate
and higher fuel consumption. Consequently
keeping traffic moving as efficiently as possible is not only important to economy but also important to environment. Traffic system is a large complex nonlinear stochastic system. Traditional mathematical methods have some limitations when they are applied in traffic control. Thus
computational intelligence (CI) technologies gain more and more attentions. Neural Networks (NNs) is a well developed CI technology with lots of promising applications in traffic signal control (TSC). In this paper
a neural network (NN) based signal controller is designed to control the traffic lights in an urban traffic road network. Scenarios of simulation are conducted under a microscopic traffic simulation software. Several criterions are collected. Results demonstrate that through online reinforcement training the controllers obtain better control effects than the widely used pre-time and actuated methods under various traffic conditions. 2011 IEEE.
Pricing Scheme based Nash Q-learning Flow Control for Multi-user Network
会议论文
OAI收割
International Conference on Materials, Mechatronics and Automation (ICMMA 2011), Melbourne, AUSTRALIA, JAN 15-16, 2011
作者:
Li X(李鑫)
;
Yu HB(于海斌)
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2012/05/29
Computer simulation
Controllers
Costs
Flow control
HIgh speed networks
Mechatronics
Quality of service
Time varying networks
Traffic congestion