中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
长春光学精密机械与物... [4]
上海生物化学与细胞生... [2]
昆明动物研究所 [2]
生物物理研究所 [1]
地理科学与资源研究所 [1]
成都山地灾害与环境研... [1]
更多
采集方式
OAI收割 [17]
内容类型
期刊论文 [16]
会议论文 [1]
发表日期
2024 [1]
2022 [1]
2019 [1]
2018 [4]
2016 [1]
2013 [1]
更多
学科主题
Biochemist... [2]
Biochemica... [1]
Biotechnol... [1]
Evolutiona... [1]
Gastroente... [1]
Genetics &... [1]
更多
筛选
浏览/检索结果:
共17条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Unleashing the full potential of hyperspectral imaging: Decoupled image and frequency-domain spatial-spectral framework
期刊论文
OAI收割
EXPERT SYSTEMS WITH APPLICATIONS, 2024, 卷号: 243, 页码: 20
作者:
He, Shuang
;
Tian, Jia
;
Hao, Lina
;
Zhang, Sen
;
Tian, Qingjiu
  |  
收藏
  |  
浏览/下载:26/0
  |  
提交时间:2024/02/18
Frequency domain
Feature extraction
Cross-domain fusion
Hyperspectral image classification
MFFENet and ADANet: a robust deep transfer learning method and its application in high precision and fast cross-scene recognition of earthquake-induced landslides
期刊论文
OAI收割
LANDSLIDES, 2022, 页码: 31
作者:
Xu, Qingsong
;
Ouyang, Chaojun
;
Jiang, Tianhai
;
Yuan, Xin
;
Fan, Xuanmei
  |  
收藏
  |  
浏览/下载:69/0
  |  
提交时间:2022/05/23
Earthquake-induced landslide recognition
Deep learning
Unsupervised domain adaptation
Multi-scale Feature Fusion with Encoder-decoder Network (MFFENet)
Adversarial Domain Adaptation Network (ADANet)
Landslide spatial analysis
Aggregating Randomized Clustering-Promoting Invariant Projections for Domain Adaptation
期刊论文
OAI收割
IEEE Trans. Pattern Anal. Machine Intell., 2019, 卷号: 41, 期号: 5, 页码: 1027-1042
作者:
Jian Liang
;
Ran He
;
Zhenan Sun
;
Tieniu Tan
  |  
收藏
  |  
浏览/下载:65/0
  |  
提交时间:2019/06/10
Unsupervised Domain Adaptation
Domain-invariant Projection
Class-clustering
Sampling-and-fusion
A multi-layer deep fusion convolutional neural network for sketch based image retrieval
期刊论文
OAI收割
NEUROCOMPUTING, 2018, 卷号: 296, 页码: 23-32
作者:
Yu, Deng
;
Liu, Yujie
;
Pang, Yunping
;
Li, Zongmin
;
Li, Hua
  |  
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2019/12/10
Cross-domain retrieval
Multi-layer modeling
Deep feature fusion
Infrared and visual image fusion using LNSST and an adaptive dual-channel PCNN with triple-linking strength
期刊论文
OAI收割
Neurocomputing, 2018, 卷号: 310, 页码: 135-147
作者:
Cheng, B. Y.
;
Jin, L. X.
;
Li, G. N.
  |  
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2019/09/17
LNSST
ATD-PCNN
Image fusion
Singular value decomposition
Auxiliary
linking strength
Triple-linking strength
sparse representation
shearlet transform
multi-focus
feature-extraction
neural-network
domain
algorithm
decomposition
Computer Science
A novel fusion framework of visible light and infrared images based on singular value decomposition and adaptive DUAL-PCNN in NSST domain
期刊论文
OAI收割
Infrared Physics & Technology, 2018, 卷号: 91, 页码: 153-163
作者:
Cheng, B. Y.
;
Jin, L. X.
;
Li, G. N.
  |  
收藏
  |  
浏览/下载:35/0
  |  
提交时间:2019/09/17
NSST
ADS-PCNN
Image fusion
Singular value decomposition
Local
structure information operator
Linking strength
shearlet transform
feature-extraction
nsct domain
algorithm
scheme
Instruments & Instrumentation
Optics
Physics
General fusion method for infrared and visual images via latent low-rank representation and local non-subsampled shearlet transform
期刊论文
OAI收割
Infrared Physics & Technology, 2018, 卷号: 92, 页码: 68-77
作者:
Cheng, B. Y.
;
Jin, L. X.
;
Li, G. N.
  |  
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2019/09/17
Latent low-rank representation
Local non-subsampled shearlet transform
Salient features
Image fusion
visible-light
contourlet transform
feature-extraction
nsct domain
algorithm
pcnn
nsst
Instruments & Instrumentation
Optics
Physics
Study of image motion compensation in spectral imaging system
期刊论文
OAI收割
Proceedings of SPIE: 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Large Mirrors and Telescopes, 2016, 卷号: 9682, 页码: 968217
作者:
Li, Zhijun
;
Chen, Xing Long
  |  
收藏
  |  
浏览/下载:32/0
  |  
提交时间:2018/06/14
Data Fusion
Error Compensation
Frequency Domain Analysis
Imaging Systems
Jitter
Manufacture
Mirrors
Motion Compensation
Optical Systems
Optical Testing
Spectroscopy
Telescopes
Expression, purification and preliminary characterization of glucagon receptor extracellular domain
期刊论文
OAI收割
PROTEIN EXPRESSION AND PURIFICATION, 2013, 卷号: 89, 期号: 2, 页码: 232-240
Wu, Lili
;
Zhai, yujia
;
翟宇佳
;
Lu, Jiuwei
;
Wang, Qinghua
;
Sun, Fei
;
孙飞
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2013/12/24
Glucagon receptor
Extracellular domain
MBP fusion
DsbC co-expression
Baculovirus expression
Isothermal titration calorimetry
Multi-focus image fusion algorithm based on adaptive PCNN and wavelet transform (EI CONFERENCE)
会议论文
OAI收割
International Symposium on Photoelectronic Detection and Imaging 2011: Advances in Imaging Detectors and Applications, May 24, 2011 - May 26, 2011, Beijing, China
Wu Z.-G.
;
Wang M.-J.
;
Han G.-L.
收藏
  |  
浏览/下载:77/0
  |  
提交时间:2013/03/25
Being an efficient method of information fusion
image fusion has been used in many fields such as machine vision
medical diagnosis
military applications and remote sensing.In this paper
Pulse Coupled Neural Network (PCNN) is introduced in this research field for its interesting properties in image processing
including segmentation
target recognition et al.
and a novel algorithm based on PCNN and Wavelet Transform for Multi-focus image fusion is proposed. First
the two original images are decomposed by wavelet transform. Then
based on the PCNN
a fusion rule in the Wavelet domain is given. This algorithm uses the wavelet coefficient in each frequency domain as the linking strength
so that its value can be chosen adaptively. Wavelet coefficients map to the range of image gray-scale. The output threshold function attenuates to minimum gray over time. Then all pixels of image get the ignition. So
the output of PCNN in each iteration time is ignition wavelet coefficients of threshold strength in different time. At this moment
the sequences of ignition of wavelet coefficients represent ignition timing of each neuron. The ignition timing of PCNN in each neuron is mapped to corresponding image gray-scale range
which is a picture of ignition timing mapping. Then it can judge the targets in the neuron are obvious features or not obvious. The fusion coefficients are decided by the compare-selection operator with the firing time gradient maps and the fusion image is reconstructed by wavelet inverse transform. Furthermore
by this algorithm
the threshold adjusting constant is estimated by appointed iteration number. Furthermore
In order to sufficient reflect order of the firing time
the threshold adjusting constant is estimated by appointed iteration number. So after the iteration achieved
each of the wavelet coefficient is activated. In order to verify the effectiveness of proposed rules
the experiments upon Multi-focus image are done. Moreover
comparative results of evaluating fusion quality are listed. The experimental results show that the method can effectively enhance the edge details and improve the spatial resolution of the image. 2011 SPIE.