中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
沈阳自动化研究所 [3]
长春光学精密机械与物... [2]
地理科学与资源研究所 [1]
遥感与数字地球研究所 [1]
心理研究所 [1]
自动化研究所 [1]
更多
采集方式
OAI收割 [12]
内容类型
会议论文 [6]
期刊论文 [5]
SCI/SSCI论文 [1]
发表日期
2022 [1]
2019 [2]
2017 [1]
2014 [2]
2013 [1]
2012 [1]
更多
学科主题
生理心理学/生物心理... [1]
筛选
浏览/检索结果:
共12条,第1-10条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Three-dimensional gravity inversion based on optimization processing from edge detection
期刊论文
OAI收割
GEODESY AND GEODYNAMICS, 2022, 卷号: 13, 期号: 5, 页码: 503-524
作者:
Liu Sheng
;
Jin Shuanggen
;
Chen Qiang
  |  
收藏
  |  
浏览/下载:5/0
  |  
提交时间:2023/05/23
Gravity inversion
Locally weighted constraint
Petrophysical constrain
Fuzzy c-means clustering algorithm
OpenAcc technology
A cooperative spectrum sensing method based on information geometry and fuzzy c-means clustering algorithm
期刊论文
OAI收割
EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2019, 页码: 12
作者:
Zhang, Shunchao
;
Wang, Yonghua
;
Li, Jiangfan
;
Wan, Pin
;
Zhang, Yongwei
  |  
收藏
  |  
浏览/下载:42/0
  |  
提交时间:2019/07/12
Cooperative spectrum sensing
Information geometry
Decomposition and recombination
Fuzzy c-means clustering algorithm
A Novel Double-Index-Constrained, Multi-view, Fuzzy-Clustering Algorithm and Its Application for Detecting Epilepsy Electroencephalogram Signals
期刊论文
OAI收割
IEEE ACCESS, 2019, 卷号: 7, 页码: 103823-103832
作者:
Zhu, Jiaqi
;
Li, Kang
;
Xia, Kaijian
;
Gu, Xiaoqing
;
Xue, Jing
  |  
收藏
  |  
浏览/下载:45/0
  |  
提交时间:2019/09/19
Epileptic detecting
multi-view clustering
double-index-constrained fuzzy clustering algorithm
An improved FCM algorithm with adaptive weights based on SA-PSO
期刊论文
OAI收割
NEURAL COMPUTING & APPLICATIONS, 2017, 卷号: 28, 期号: 10, 页码: 3113-3118
作者:
Wu, Ziheng
;
Wu, Zhongcheng
;
Zhang, Jun
  |  
收藏
  |  
浏览/下载:52/0
  |  
提交时间:2018/08/16
Fuzzy C-means Clustering Algorithm
Particle Swarm Optimization
Simulated Annealing
Adaptive Weight
A Real-Time Image Processing Method for Multi-Beam Forward-Looking Sonar of AUV
会议论文
OAI收割
2014 International Conference on Mechatronics Engineering and Modern Technologies in Industrial Engineering (MEMTIE 2014), Changsha, Hunan, China, October 25-26, 2014
作者:
Gao L(高雷)
;
Xu HL(徐红丽)
收藏
  |  
浏览/下载:19/0
  |  
提交时间:2015/12/13
AUV
Fuzzy Clustering Algorithm
Multi-Beam Sonar
Sonar Image Processing
An enhanced Kernel Fuzzy C-Means Algorithm based on bio-inspired computing methods
会议论文
OAI收割
International Conference on Electronics, Information Technology and Intellectualization, EITI 2014, Shenzhen, China, August 16-17, 2014
作者:
Liu Y(刘洋)
;
Hu KY(胡琨元)
;
Zhu YL(朱云龙)
;
Chen HN(陈瀚宁)
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2017/03/14
data clustering
bio-inspired computing optimization algorithm
Kernel Fuzzy C-Means Algorithm
Artificial Bee Colony
An integrative hierarchical stepwise sampling strategy for spatial sampling and its application in digital soil mapping
SCI/SSCI论文
OAI收割
2013
作者:
Pei T.
;
Yang L.
收藏
  |  
浏览/下载:38/0
  |  
提交时间:2014/12/24
spatial sampling
fuzzy clustering
digital soil mapping
SoLIM
design
information
variables
algorithm
optimization
prediction
knowledge
schemes
model
Overhead power line detection from UAV video images
会议论文
OAI收割
2012 19th International Conference on Mechatronics and Machine Vision in Practice, M2VIP 2012, Auckland, New zealand, November 28-30, 2012
作者:
Yang TW(杨唐文)
;
Yin, Hang
;
Ruan QQ(阮秋琦)
;
Han JD(韩建达)
;
Qi JT(齐俊桐)
收藏
  |  
浏览/下载:60/0
  |  
提交时间:2017/03/14
power line detection
UAV
image binarization
Hough Transform
Fuzzy C-means Clustering algorithm
An electro-optical tracking method in target separation based on fuzzy clustering association rules (EI CONFERENCE)
会议论文
OAI收割
2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, CMCE 2010, August 24, 2010 - August 26, 2010, Changchun, China
Guo T.-J.
;
Gao H.-B.
;
Zhang S.-M.
;
Wu Y.-J.
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2013/03/25
An effective tracking method is proposed to solve the problem that the electro-optical tracking system in Missile Range easily loses the real target during the target separation. Before target separation
the error correcting value of the theoretical trajectory is obtained by the theoretical trajectory correcting algorithm. In the phase of target separation
the theoretical trajectory of the target is corrected by the error correcting value firstly
and then the fuzzy clustering association algorithm is applied to calculate the similarity between the measuring data of the target from sensors and the corrected theoretical trajectory. The similarity helps to identify whether the measured data is from the real target or not. Experimental results show that the authenticity of the target can be determined effectively. The identified results can be used as the decision-making basis of the servo sub-system and TV trackers
which can improve the continuous tracking probability of the electro-optical tracking system in the target separation. 2010 IEEE.
A new early stopping algorithm for improving neural network generalization (EI CONFERENCE)
会议论文
OAI收割
2009 2nd International Conference on Intelligent Computing Technology and Automation, ICICTA 2009, October 10, 2009 - October 11, 2009, Changsha, Hunan, China
作者:
Liu J.-G.
;
Wu X.-X.
收藏
  |  
浏览/下载:23/0
  |  
提交时间:2013/03/25
As generalization ability of neural network was restricted by overfitting problem in the network's training. Early stopping algorithm based on fuzzy clustering was put forward to solve this problem in this paper. Subtractive clustering and Fuzzy C-Means clustering (FCM) were combined to realize optimal division of training set
validation set and test set. How to realize this algorithm in backpropagation (BP) network by utilizing neural network toolbox and fuzzy logic toolbox in MATLAB was dwelled on. Early stopping algorithm based on fuzzy clustering and other early stopping algorithms were applied in function approximation and pattern recognition problems in validation experiments. Experiments results indicate that early stopping algorithm based on fuzzy clustering has higher precision in comparison to other early stopping algorithms. Outputs of training set
validation set and test set are more accordant. 2009 IEEE.